Yuan Shuai, Fu Wen, Du Ming, Yao Rao, Zhang Dan, Li Chao, Chen Zixi, Wang Jiangxin
School of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.
Hainan Chenhai Aquatic Co., Ltd., Sanya, China.
Front Microbiol. 2024 Oct 17;15:1465351. doi: 10.3389/fmicb.2024.1465351. eCollection 2024.
Microalgae, known for their adaptability to extreme environments, are important for basic research and industrial applications. , unique for its lack of a cell wall, has garnered attention due to its versatility and the presence of bioactive compounds. Despite its potential, few studies have focused on 's cold adaptation mechanisms.
This study investigates the cold adaptation mechanisms of , a microalga found in highly diverse environmental habitats, by comparing its growth, photosynthetic performance, and physiological and biochemical responses under two low-temperature cultivation modes: pre-adaptation to 16°C followed by exposure to 4°C (PreC) and direct exposure to 4°C (DirC).
In this study, the PreC group exhibited superior growth rates, higher photosynthetic efficiency, and more excellent antioxidant activity compared to the DirC group. These advantages were attributed to higher levels of protective compounds, enhanced membrane stability, and increased unsaturated fatty acid content. The PreC group's ability to maintain higher cell vitality under cold stress conditions underscores the significance of pre-adaptation in enhancing cold tolerance. The findings from this research provide valuable insights into the mechanisms underlying cold adaptation in , emphasizing the benefits of pre-adaptation. These insights are crucial for optimizing the cultivation of algal species under cold stress conditions, which is essential for both biotechnological applications and ecological studies. This study not only advances our understanding of 's adaptive responses to low temperatures but also contributes to the broader field of algal research and its industrial exploitation.
微藻以其对极端环境的适应性而闻名,对基础研究和工业应用都很重要。[具体微藻名称]因其缺乏细胞壁而独特,因其多功能性和生物活性化合物的存在而备受关注。尽管具有潜力,但很少有研究关注[具体微藻名称]的冷适应机制。
本研究通过比较在两种低温培养模式下的生长、光合性能以及生理生化反应,来探究[具体微藻名称](一种存在于高度多样环境栖息地的微藻)的冷适应机制。这两种模式分别是:先适应16°C然后暴露于4°C(预适应低温,PreC)和直接暴露于4°C(直接低温,DirC)。
在本研究中,与DirC组相比,PreC组表现出更高的生长速率、更高的光合效率和更优异的抗氧化活性。这些优势归因于更高水平的保护化合物、增强的膜稳定性以及增加的不饱和脂肪酸含量。PreC组在冷胁迫条件下维持较高细胞活力的能力突出了预适应在增强耐寒性方面的重要性。本研究结果为[具体微藻名称]的冷适应机制提供了有价值的见解,强调了预适应的益处。这些见解对于优化冷胁迫条件下藻类的培养至关重要,这对于生物技术应用和生态研究都必不可少。本研究不仅推进了我们对[具体微藻名称]对低温适应性反应的理解,也为藻类研究及其工业开发的更广泛领域做出了贡献。