Suppr超能文献

全关节置换术后30天静脉血栓栓塞的预测:根据年度住院时间趋势进行调整

Predicting 30-Day Venous Thromboembolism Following Total Joint Arthroplasty: Adjusting for Trends in Annual Length of Stay.

作者信息

Lex Johnathan R, Koucheki Robert, Abbas Aazad, Wolfstadt Jesse I, McLawhorn Alexander S, Ravi Bheeshma

机构信息

Temerty Faculty of Medicine, Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada.

Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.

出版信息

Arthroplast Today. 2024 Oct 15;30:101491. doi: 10.1016/j.artd.2024.101491. eCollection 2024 Dec.

Abstract

BACKGROUND

Venous thromboembolism (VTE) following total hip arthroplasty and total knee arthroplasty (TKA) is linked to immobility, and preoperative prediction remains difficult. We aimed to evaluate whether annual mean length of stay (LOS) is associated with the incidence of VTE and develop a generalizable machine learning model to preoperatively predict the incidence of symptomatic VTE following total hip and TKA using National Surgical Quality Improvement Program.

METHODS

Annual incidence of 30-day postoperative VTE, deep vein thrombosis, and pulmonary embolism was calculated over 6 years and tested for trend. Correlation between annual VTE rates and mean LOS was calculated. Predictive models (logistic regression, random forest, and XGBoost) were trained and tested based on year of surgery with different oversampling algorithms used to address data imbalance.

RESULTS

A total of 498,314 patients were included, with 0.88% developing a VTE within 30 days. VTE rates decreased from 1.11% in 2014 to 0.76% in 2019 ( < .001). There was a strong correlation between the yearly incidence of VTE, pulmonary embolism, and deep vein thrombosis and mean LOS (r = 0.96, 0.87, and 0.98, respectively). Univariate analysis demonstrated that TKA, inpatient setting, American Society of Anesthesiologists classification, and various patient comorbidities were significantly associated with VTE. The logistic regression model trained on all data with a balanced loss scoring function performed the best (area under the curve = 0.600).

CONCLUSIONS

This study revealed declining VTE rates strongly correlated to decreasing postoperative LOS and identified patient and surgery-specific factors associated with VTE risk. Development of more accurate machine learning models for VTE prediction may improve risk stratification, prevention, and monitoring for arthroplasty patients.

摘要

背景

全髋关节置换术和全膝关节置换术(TKA)后发生的静脉血栓栓塞症(VTE)与活动减少有关,术前预测仍然困难。我们旨在评估年平均住院时间(LOS)是否与VTE的发生率相关,并开发一种可推广的机器学习模型,使用国家外科质量改进计划术前预测全髋关节置换术和TKA后症状性VTE的发生率。

方法

计算6年期间术后30天VTE、深静脉血栓形成和肺栓塞的年发生率,并进行趋势检验。计算年VTE发生率与平均LOS之间的相关性。基于手术年份训练和测试预测模型(逻辑回归、随机森林和XGBoost),并使用不同的过采样算法来解决数据不平衡问题。

结果

共纳入498,314例患者,其中0.88%在30天内发生VTE。VTE发生率从2014年的1.11%降至2019年的0.76%(P<0.001)。VTE、肺栓塞和深静脉血栓形成的年发生率与平均LOS之间存在很强的相关性(r分别为0.96、0.87和0.98)。单因素分析表明,TKA、住院环境、美国麻醉医师协会分级以及各种患者合并症与VTE显著相关。使用平衡损失评分函数在所有数据上训练的逻辑回归模型表现最佳(曲线下面积=0.600)。

结论

本研究显示VTE发生率下降与术后住院时间缩短密切相关,并确定了与VTE风险相关的患者和手术特定因素。开发更准确的VTE预测机器学习模型可能会改善关节置换术患者的风险分层、预防和监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5a8/11526050/04ef9838f20d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验