Suppr超能文献

一种用于评估髋关节或膝关节置换患者静脉血栓栓塞风险的机器学习框架。

A Machine Learning Framework for Assessing the Risk of Venous Thromboembolism in Patients Undergoing Hip or Knee Replacement.

作者信息

Rasouli Dezfouli Elham, Delen Dursun, Zhao Huimin, Davazdahemami Behrooz

机构信息

University of Wisconsin-Milwaukee, Milwaukee, WI USA.

Oklahoma State University, Stillwater, OK USA.

出版信息

J Healthc Inform Res. 2022 Oct 25;6(4):423-441. doi: 10.1007/s41666-022-00121-2. eCollection 2022 Dec.

Abstract

Venous thromboembolism (VTE) is a well-recognized complication that is prevalent in patients undergoing major orthopedic surgery (e.g., total hip arthroplasty and total knee arthroplasty). For years, to identify patients at high risk of developing VTE, physicians have relied on traditional risk scoring systems, which are too simplistic to capture the risk level accurately. In this paper, we propose a data-driven machine learning framework to identify such high-risk patients before they undergo a major hip or knee surgery. Using electronic health records of more than 392,000 patients who undergone a major orthopedic surgery, and following a guided feature selection using the genetic algorithm, we trained a fully connected deep neural network model to predict high-risk patients for developing VTE. We identified several risk factors for VTE that were not previously recognized. The best FCDNN model trained using the selected features yielded an area under the ROC curve (AUC) of 0.873, which was remarkably higher than the best AUC obtained by including only risk factors previously known in the medical literature. Our findings suggest several interesting and important insights. The traditional risk scoring tables that are being widely used by physicians to identify high-risk patients are not considering a comprehensive set of risk factors, nor are they as powerful as cutting-edge machine learning methods in distinguishing low- from high-risk patients.

摘要

静脉血栓栓塞症(VTE)是一种公认的并发症,在接受大型骨科手术(如全髋关节置换术和全膝关节置换术)的患者中很常见。多年来,为了识别有发生VTE高风险的患者,医生一直依赖传统的风险评分系统,而这些系统过于简单,无法准确捕捉风险水平。在本文中,我们提出了一个数据驱动的机器学习框架,用于在患者接受大型髋关节或膝关节手术前识别此类高风险患者。利用超过39.2万名接受大型骨科手术患者的电子健康记录,并在使用遗传算法进行引导特征选择后,我们训练了一个全连接深度神经网络模型来预测发生VTE的高风险患者。我们识别出了一些以前未被认识到的VTE风险因素。使用所选特征训练的最佳全连接深度神经网络模型的ROC曲线下面积(AUC)为(0.873),这显著高于仅纳入医学文献中先前已知风险因素所获得的最佳AUC。我们的研究结果提出了一些有趣且重要的见解。医生广泛使用的传统风险评分表没有考虑全面的风险因素集,在区分低风险和高风险患者方面也不如前沿的机器学习方法强大。

相似文献

本文引用的文献

7
Clinical Characteristics of Coronavirus Disease 2019 in China.《中国 2019 年冠状病毒病临床特征》
N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验