Omarov Murad, Zhang Lanyue, Jorshery Saman Doroodgar, Malik Rainer, Das Barnali, Bellomo Tiffany R, Mansmann Ulrich, Menten Martin J, Natarajan Pradeep, Dichgans Martin, Raghu Vineet K, Anderson Christopher D, Georgakis Marios K
Institute for Stroke and Dementia Research, LMU University Hospital, LMU Munich, Munich, Germany.
Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
medRxiv. 2024 Oct 18:2024.10.17.24315675. doi: 10.1101/2024.10.17.24315675.
Atherosclerotic cardiovascular disease, the leading cause of global mortality, is driven by lipid accumulation and plaque formation within arterial walls. Carotid plaques, detectable via ultrasound, are a well-established marker of subclinical atherosclerosis. In this study, we trained a deep learning model to detect plaques in 177,757 carotid ultrasound images from 19,499 UK Biobank (UKB) participants (aged 47-83 years) to assess the prevalence, risk factors, prognostic significance, and genetic architecture of carotid atherosclerosis in a large population-based cohort. The model demonstrated high performance metrics with accuracy, sensitivity, specificity, and positive predictive value of 89.3%, 89.5%, 89.2%, and 82.9%, respectively, identifying carotid plaques in 45% of the population. Plaque presence and count were significantly associated with future cardiovascular events over a median follow-up period of up to 7 years, leading to improved risk reclassification beyond established clinical prediction models. A genome-wide association study (GWAS) meta-analysis of carotid plaques (29,790 cases, 36,847 controls) uncovered two novel genomic loci (p < 5×10) with downstream analyses implicating lipoprotein(a) and interleukin-6 signaling, both targets of investigational drugs in advanced clinical development. Observational and Mendelian randomization analyses showed associations between smoking, low-density-lipoprotein (LDL) cholesterol, and high blood pressure and the odds of carotid plaque presence. Our study underscores the potential of carotid plaque assessment for improving cardiovascular risk prediction, provides novel insights into the genetic basis of subclinical atherosclerosis, and offers a valuable resource for advancing atherosclerosis research at the population scale.
动脉粥样硬化性心血管疾病是全球死亡的主要原因,由动脉壁内脂质积累和斑块形成所驱动。通过超声可检测到的颈动脉斑块是亚临床动脉粥样硬化的一个公认标志物。在本研究中,我们训练了一个深度学习模型,以检测来自19499名英国生物银行(UKB)参与者(年龄在47 - 83岁之间)的177757张颈动脉超声图像中的斑块,以评估基于大人群队列的颈动脉粥样硬化的患病率、危险因素、预后意义和遗传结构。该模型表现出高性能指标,准确率、敏感性、特异性和阳性预测值分别为89.3%、89.5%、89.2%和82.9%,在45%的人群中识别出颈动脉斑块。在长达7年的中位随访期内,斑块的存在和数量与未来心血管事件显著相关,导致在既定临床预测模型之外的风险重新分类得到改善。一项对颈动脉斑块的全基因组关联研究(GWAS)荟萃分析(29790例病例,36847例对照)发现了两个新的基因组位点(p < 5×10),下游分析涉及脂蛋白(a)和白细胞介素-6信号传导,这两者都是处于临床开发后期的研究药物的靶点。观察性和孟德尔随机化分析显示吸烟、低密度脂蛋白(LDL)胆固醇和高血压与颈动脉斑块存在的几率之间存在关联。我们的研究强调了颈动脉斑块评估在改善心血管风险预测方面的潜力,为亚临床动脉粥样硬化的遗传基础提供了新的见解,并为在人群规模上推进动脉粥样硬化研究提供了宝贵资源。