Dyballa Luciano, Field Greg D, Stryker Michael P, Zucker Steven W
School of Science and Technology, IE University, Madrid, Spain.
Department of Computer Science, Yale University, New Haven, USA.
bioRxiv. 2024 Dec 20:2024.10.24.620089. doi: 10.1101/2024.10.24.620089.
A challenge in sensory neuroscience is understanding how populations of neurons operate in concert to represent diverse stimuli. To meet this challenge, we have created "encoding manifolds" that reveal the overall responses of brain areas to diverse stimuli with the resolution of individual neurons and their response dynamics. Here we use encoding manifold to compare the population-level encoding of primary visual cortex (VISp) with five higher visual areas (VISam, VISal, VISpm, VISlm, and VISrl). We used data from the Allen Institute Visual Coding-Neuropixels dataset from the mouse. We show that the encoding manifold topology computed only from responses to grating stimuli is continuous, for V1 and for higher visual areas, with smooth coordinates spanning it that include orientation selectivity and firing-rate magnitude. Surprisingly, the manifolds for each visual area revealed novel relationships between how natural scenes are encoded relative to static gratings-a relationship that was conserved across visual areas. Namely, neurons preferring natural scenes preferred either low or high spatial frequency gratings, but not intermediate ones. Analyzing responses by cortical layer reveals a preference for gratings concentrated in layer 6, whereas preferences for natural scenes tended to be higher in layers 2/3 and 4. The results reveal how machine learning approaches can be used to organize and visualize the structure of sensory coding, thereby revealing novel relationships within and across brain areas and sensory stimuli.
感觉神经科学面临的一个挑战是理解神经元群体如何协同运作以表征各种刺激。为应对这一挑战,我们创建了“编码流形”,它能够以单个神经元的分辨率及其反应动力学揭示脑区对各种刺激的整体反应。在此,我们使用编码流形来比较初级视觉皮层(VISp)与五个高级视觉区域(VISam、VISal、VISpm、VISlm和VISrl)在群体水平上的编码。我们使用了来自艾伦脑科学研究所小鼠视觉编码 - 神经像素数据集的数据。我们表明,仅根据对光栅刺激的反应计算出的编码流形拓扑结构,对于V1和高级视觉区域而言是连续的,其平滑坐标涵盖了方向选择性和放电率大小。令人惊讶的是,每个视觉区域的流形揭示了自然场景相对于静态光栅的编码方式之间的新关系——这种关系在各个视觉区域中都是保守的。也就是说,偏好自然场景的神经元偏好低频或高频光栅,但不偏好中频光栅。按皮层层分析反应表明,对光栅的偏好集中在第6层,而对自然场景的偏好往往在第2/3层和第4层更高。这些结果揭示了机器学习方法如何能够用于组织和可视化感觉编码的结构,从而揭示脑区内部和之间以及感觉刺激之间的新关系。