Pswarayi Hakunawadi Alexander, Joy Edward J M, Gashu Dawd, Sandalinas Fanny, Belay Adamu, Lark R Murray
School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, Loughborough, UK.
London School of Hygiene & Tropical Medicine Faculty of Epidemiology and Population Health, London, UK.
J Public Health Res. 2024 Oct 22;13(4):22799036241274962. doi: 10.1177/22799036241274962. eCollection 2024 Oct.
Because micronutrient deficiencies affect public health, countries monitor population status by national-scale, multi-stage, micronutrient surveys (MNS). In design-based surveys, inclusion probabilities are specified for sample units and the corresponding sample weights allow design-unbiased estimates to be made of population parameters. Corrections may be possible on departures from the design; an alternative is to use linear mixed models (LMM), with an estimated covariance structure reflecting the sampling design, to obtain model-based estimates.
The Ethiopia National Micronutrient Survey (2016) specified inclusion probabilities at enumeration area (EA) and household (HH) levels, and sample weights are provided. However, the design was not followed as it would have resulted in insufficient sampling from women of reproductive age.
Having found no evidence that sample weights were informative for target serum micronutrient concentrations (Zn), we estimated LMM parameters, with Regions as fixed effects, and the variation of individuals nested within households, households within EA, and EA within regions, random effects. We obtained LMM standard errors, Best Linear Unbiased Estimates (BLUEs) of regional means, and empirical Best Linear Unbiased Predictions for sampled/unsampled EA and HH. The probability that each true regional mean exceeded the sufficiency threshold was evaluated. The variances of BLUEs of regional means, under alternative sampling designs, were bootstrapped from LMM variance components.
We demonstrate use of LMM to obtain model-unbiased estimates and predictions when surveys deviate from the original design; and the use of LMM variance components to evaluate alternative designs for further sampling, or for sampling comparable populations.
由于微量营养素缺乏影响公众健康,各国通过全国范围的多阶段微量营养素调查(MNS)来监测人群状况。在基于设计的调查中,会为样本单位指定纳入概率,相应的样本权重可用于对总体参数进行设计无偏估计。对于偏离设计的情况可能进行校正;另一种方法是使用线性混合模型(LMM),其估计的协方差结构反映抽样设计,以获得基于模型的估计。
埃塞俄比亚全国微量营养素调查(2016年)指定了枚举区域(EA)和家庭(HH)层面的纳入概率,并提供了样本权重。然而,该设计未得到遵循,因为这会导致育龄妇女的抽样不足。
在未发现样本权重对目标血清微量营养素浓度(锌)具有信息价值的证据后,我们估计了LMM参数,将地区作为固定效应,将嵌套在家庭内的个体、EA内的家庭以及地区内的EA的变异作为随机效应。我们获得了LMM标准误差、地区均值的最佳线性无偏估计(BLUEs)以及对抽样/未抽样的EA和HH的经验最佳线性无偏预测。评估了每个真实地区均值超过充足阈值的概率。在替代抽样设计下,地区均值BLUEs的方差通过LMM方差分量进行自助法估计。
我们展示了在调查偏离原始设计时使用LMM来获得模型无偏估计和预测;以及使用LMM方差分量来评估进一步抽样或对可比人群抽样的替代设计。