Boley Alexander J, Genova Jason C, Nicewicz David A
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States.
J Am Chem Soc. 2024 Nov 13;146(45):31274-31280. doi: 10.1021/jacs.4c12028. Epub 2024 Nov 1.
Piperazine cores have long been identified as privileged scaffolds in the development of pharmaceutical compounds. Despite this, the facile synthesis of diverse C-substituted piperazines remains a challenge without prefunctionalized substrates/cores. Herein, we describe a programmable approach to highly diversifiable piperazine cores, which circumvents the typical need for radical precursors. The use of organic photoredox catalysis renders this method operationally simple, as direct substrate oxidation followed by 6- radical cyclization with in situ generated imines may furnish the product. Additionally, the photoredox-catalyzed anti-Markovnikov hydroamination of readily accessible ene-carbamates provides a modular approach to functionalized diamine starting materials which are shown to generate more complex piperazine cores. A wide range of both carbonyl and amine condensation partners were shown to be compatible with this system in good to excellent yield.
哌嗪核心结构长期以来一直被认为是药物化合物开发中的优势骨架。尽管如此,在没有预官能化底物/核心的情况下,多样化的碳取代哌嗪的简便合成仍然是一个挑战。在此,我们描述了一种可高度多样化哌嗪核心结构的可编程方法,该方法避免了对自由基前体的典型需求。有机光氧化还原催化的使用使该方法操作简单,因为直接底物氧化,然后与原位生成的亚胺进行6-自由基环化可以得到产物。此外,光氧化还原催化的易于获得的烯基氨基甲酸酯的反马氏氢胺化反应提供了一种模块化方法来制备官能化二胺起始原料,这些原料可用于生成更复杂的哌嗪核心结构。已证明多种羰基和胺缩合伙伴与该体系兼容,产率良好至优异。