Process Research & Development, Merck Research Laboratories , P.O. Box 2000, Rahway, New Jersey 07065, United States.
Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States.
J Org Chem. 2016 Aug 19;81(16):7244-9. doi: 10.1021/acs.joc.6b01240. Epub 2016 Jul 25.
The emergence of visible light photoredox catalysis has enabled the productive use of lower energy radiation, leading to highly selective reaction platforms. Polypyridyl complexes of iridium and ruthenium have served as popular photocatalysts in recent years due to their long excited state lifetimes and useful redox windows, leading to the development of diverse photoredox-catalyzed transformations. The low abundances of Ir and Ru in the earth's crust and, hence, cost make these catalysts nonsustainable and have limited their application in industrial-scale manufacturing. Herein, we report a series of novel acridinium salts as alternatives to iridium photoredox catalysts and show their comparability to the ubiquitous Ir(dF-CF3-ppy)2(dtbpy).
可见光阴极催化的出现使人们能够有效地利用低能量辐射,从而形成了高度选择性的反应平台。近年来,由于铱和钌的多吡啶配合物具有较长的激发态寿命和有用的氧化还原窗口,因此它们已成为流行的光催化剂,从而推动了各种光氧化还原催化转化的发展。然而,铱和钌在地壳中的低丰度以及由此产生的成本使得这些催化剂不可持续,并限制了它们在工业规模制造中的应用。在此,我们报告了一系列新型吖啶鎓盐作为铱光氧化还原催化剂的替代品,并展示了它们与普遍存在的Ir(dF-CF3-ppy)2(dtbpy)的可比性。