Soe Nyi Nyi, Latt Phyu Mon, King Alicia, Lee David, Phillips Tiffany R, Fairley Christopher K, Zhang Lei, Ong Jason J
Artificial Intelligence and Modelling in Epidemiology Program, Melbourne Sexual Health Centre, Alfred Health, Melbourne, Australia.
School of Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
Patient. 2025 Mar;18(2):131-143. doi: 10.1007/s40271-024-00720-8. Epub 2024 Nov 1.
One of the World Health Organization (WHO) recommendations to achieve its global targets for sexually transmitted infections (STIs) is the increased use of digital technologies. Melbourne Sexual Health Centre (MSHC) has developed an AI-assisted screening application (app) called AiSTi for the detection of common STI-related anogenital skin conditions. This study aims to understand the community's preference for using the AiSTi app.
We used a discrete choice experiment (DCE) to understand community preferences regarding the attributes of the AiSTi app for checking anogenital skin lesions. The DCE design included the attributes: data type; AI accuracy; verification of result by clinician; details of result; speed; professional support; and cost. The anonymous DCE survey was distributed to clients attending MSHC and through social media channels in Australia between January and March 2024. Participant preferences on various app attributes were examined using random parameters logit (RPL) and latent class analysis (LCA) models.
The median age of 411 participants was 32 years (interquartile range 26-40 years), with 64% assigned male at birth. Of the participants, 177 (43.1%) identified as same-sex attracted and 137 (33.3%) as heterosexual. In the RPL model, the most influential attribute was the cost of using the app (24.1%), followed by the clinician's verification of results (20.4%), the AI accuracy (19.5%) and the speed of receiving the result (19.1%). The LCA identified two distinct groups: 'all-rounders' (88%), who considered every attribute as important, and a 'cost-focussed' group (12%), who mainly focussed on the price. On the basis of the currently available app attributes, the predicted uptake was 72%. In the short term, a more feasible scenario of improving AI accuracy to 80-89% with clinician verification at a $5 cost could increase uptake to 90%. A long-term optimistic scenario with AI accuracy over 95%, no clinician verification and no cost could increase it to 95%.
Preferences for an AI-assisted screening app targeting STI-related anogenital skin lesions are one that is low-cost, clinician-verified, highly accurate and provides results rapidly. An app with these key qualities would substantially improve user uptake.
世界卫生组织(WHO)为实现其性传播感染(STIs)全球目标所提出的建议之一是增加数字技术的使用。墨尔本性健康中心(MSHC)开发了一款名为AiSTi的人工智能辅助筛查应用程序(app),用于检测常见的与性传播感染相关的肛门生殖器皮肤疾病。本研究旨在了解社区对使用AiSTi应用程序的偏好。
我们采用离散选择实验(DCE)来了解社区对AiSTi应用程序用于检查肛门生殖器皮肤病变的属性的偏好。DCE设计包括以下属性:数据类型;人工智能准确性;临床医生对结果的核实;结果详情;速度;专业支持;以及成本。2024年1月至3月期间,匿名的DCE调查被分发给到MSHC就诊的患者以及通过澳大利亚的社交媒体渠道进行发放。使用随机参数logit(RPL)和潜在类别分析(LCA)模型来研究参与者对各种应用程序属性的偏好。
411名参与者的年龄中位数为32岁(四分位间距为26 - 40岁),其中64%出生时被指定为男性。在参与者中,177人(43.1%)认定为同性吸引者,137人(33.3%)认定为异性恋者。在RPL模型中,最具影响力的属性是使用该应用程序的成本(24.1%),其次是临床医生对结果的核实(20.4%)、人工智能准确性(19.5%)以及接收结果的速度(19.1%)。LCA识别出两个不同的群体:“全能型”(88%),他们认为每个属性都很重要;以及“注重成本型”群体(12%),他们主要关注价格。根据目前可用的应用程序属性,预测的接受率为72%。在短期内,一个更可行的方案是将人工智能准确性提高到80 - 89%,同时临床医生进行核实,成本为5美元,这可能会使接受率提高到90%。一个长期的乐观方案是人工智能准确性超过95%,无需临床医生核实且免费,这可能会将接受率提高到95%。
对于一款针对与性传播感染相关的肛门生殖器皮肤病变的人工智能辅助筛查应用程序,人们的偏好是低成本、经临床医生核实、高度准确且能快速提供结果。具备这些关键品质的应用程序将大幅提高用户接受度。