Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Biomedical Engineering Division, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
Carbohydr Polym. 2025 Jan 1;347:122693. doi: 10.1016/j.carbpol.2024.122693. Epub 2024 Aug 31.
Microencapsulation is one of the most important methods to enhance the survival of bacteria when exposed to various harsh conditions. The present study evaluated the viability of L. reuteri ATCC 23272 microencapsulated in polysaccharide-based bionanocomposite. Inulin, polydextrose, and pectin were utilized as prebiotics, and magnesium oxide nanoparticles (MgO NPs) as reinforcing agent in the microgel structure. The composition of bionanocomposite was optimized using the simplex-lattice mixture method. Bionanocomposite optimal formulation was achieved by combining 91.6 % inulin and 8.4 % pectin in the presence of MgO NPs. L. reuteri prebiotic score (1.33) and E. coli (1.08), extrusion efficiency (97.57 %), viability after drying (99.37 %), and viability in simulated gastrointestinal conditions (SGI) (91.74 %) were obtained. Not using MgO NPs in the optimal composite structure caused a decrease of 2.14 log CFU/g in SGI. During 28 days of storage of bacteria at 4 and 25 °C, respectively, a reduction of 2.56 and 3.04 log CFU/g was observed for free cells compared to encapsulated cells. SEM, FTIR, and XRD analyses were performed on ingredients and microcapsules with and without bacteria. The results exhibited that the optimal bionanocomposite could be used as a beneficial encapsulation system to improve the performance of probiotics in harsh conditions.
微胶囊化是提高细菌在各种恶劣条件下生存能力的最重要方法之一。本研究评估了包埋在基于多糖的生物纳米复合材料中的 L. reuteri ATCC 23272 的存活率。菊粉、聚右旋糖和果胶被用作益生元,而氧化镁纳米粒子(MgO NPs)则作为微凝胶结构中的增强剂。使用单纯形格子混合法优化了生物纳米复合材料的组成。通过在存在 MgO NPs 的情况下将 91.6%的菊粉和 8.4%的果胶组合,实现了生物纳米复合材料的最佳配方。获得了 L. reuteri 益生元评分(1.33)和大肠杆菌(1.08)、挤出效率(97.57%)、干燥后存活率(99.37%)以及模拟胃肠道条件下的存活率(91.74%)。在最佳复合结构中不使用 MgO NPs 会导致 SGI 中活菌数减少 2.14 个对数 CFU/g。在 4 和 25°C 下分别储存细菌 28 天,与封装细胞相比,自由细胞的活菌数减少了 2.56 和 3.04 个对数 CFU/g。对有菌和无菌的成分和微胶囊进行了 SEM、FTIR 和 XRD 分析。结果表明,最佳生物纳米复合材料可用作有益的封装系统,以提高益生菌在恶劣条件下的性能。