Department of Basic and Applied Sciences, NIFTEM, Sonepat, Haryana, India.
Dr. Reddy's Laboratories Limited, Hyderabad, India.
Probiotics Antimicrob Proteins. 2024 Aug;16(4):1365-1375. doi: 10.1007/s12602-023-10115-0. Epub 2023 Jul 4.
Microencapsulation is an optimistic method for the delivery of live microbial cells through different food products. In this study, riboflavin-producing probiotic strain Lactiplantibacillus plantarum MTCC 25,432 was encapsulated using a spray drying technique with different wall materials including Inulin, maltodextrin (MD), and MD + Inulin (1:1). The obtained spray dried powder was investigated for probiotic viability, encapsulation efficiency, particle size, water activity, moisture content, hygroscopicity, bulk and tapped densities, storage stabilities, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Besides this, the viability of the free and encapsulated probiotic cells was tested under simulated gastric and intestinal fluid conditions. In the results, microcapsules produced with the combination of MD + Inulin showed higher dry powder yield (36.5%) and viability of L. plantarum MTCC 25,432 (7.4 log CFU / g) as compared with individual coating materials. Further characterization revealed that MD + Inulin microcapsules are spherical (3.50 ± 1.61 μm in diameter) in shape with concavities, showed the highest encapsulation efficiency (82%), low water activity (0.307), moisture content (3.67%) and good survival ability at low pH (pH 2.0 and 3.0), high bile salt concentrations (1.0% and 2.0%), and long storage conditions. No differences in FTIR spectra were observed among the tested samples. However, TGA showed enhanced thermal stability of probiotic-loaded microcapsules when MD + Inulin was used together. In conclusion, MD + Inulin could be a potential encapsulation material for riboflavin-producing probiotic bacteria L. plantarum MTCC 25,432.
微胶囊化是通过不同食品递送活菌微生物细胞的一种有前途的方法。在这项研究中,使用喷雾干燥技术,使用不同的壁材料(包括菊粉、麦芽糊精(MD)和 MD+菊粉(1:1))对产核黄素益生菌菌株植物乳杆菌 MTCC 25432 进行了包封。研究了所得喷雾干燥粉末的益生菌存活率、包封效率、粒径、水分活度、水分含量、吸湿性、堆积密度和振实密度、储存稳定性、傅里叶变换红外光谱(FTIR)和热重分析(TGA)。此外,测试了游离和包封益生菌细胞在模拟胃液和肠液条件下的存活率。结果表明,与单独的包衣材料相比,用 MD+菊粉组合生产的微胶囊具有更高的干粉产率(36.5%)和植物乳杆菌 MTCC 25432 的存活率(7.4 log CFU/g)。进一步的表征表明,MD+菊粉微胶囊为球形(直径 3.50±1.61 μm),有凹陷,表现出最高的包封效率(82%)、低水分活度(0.307)、低水分含量(3.67%)和在低 pH(pH 2.0 和 3.0)、高胆盐浓度(1.0%和 2.0%)以及长期储存条件下的良好存活能力。测试样品的 FTIR 光谱没有差异。然而,TGA 表明,当 MD+菊粉一起使用时,益生菌负载微胶囊的热稳定性增强。总之,MD+菊粉可能是产核黄素益生菌植物乳杆菌 MTCC 25432 的一种有潜力的包封材料。