Suppr超能文献

在WS限制的原子钯位点上,环境条件下乙炔加氢制乙烯

Ambient-condition acetylene hydrogenation to ethylene over WS-confined atomic Pd sites.

作者信息

Zhang Wangwang, Uwakwe Kelechi, Hu Jingting, Wei Yan, Zhu Juntong, Zhou Wu, Ma Chao, Yu Liang, Huang Rui, Deng Dehui

机构信息

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.

State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China.

出版信息

Nat Commun. 2024 Nov 1;15(1):9457. doi: 10.1038/s41467-024-53481-1.

Abstract

Ambient-condition acetylene hydrogenation to ethylene (AC-AHE) is a promising process for ethylene production with minimal additional energy input, yet remains a great challenge due to the difficulty in the coactivation of acetylene and H at room temperature. Herein, we report a highly efficient AC-AHE process over robust sulfur-confined atomic Pd species on tungsten sulfide surface. The catalyst exhibits over 99% acetylene conversion with a high ethylene selectivity of 70% at 25 C, and a record space-time yield of ethylene of 1123 mol mol h under ambient conditions, which is nearly four times that of the typical PdAg/AlO catalyst, and exhibiting superior stability of over 500 h. We demonstrate that the confinement of Pd-S coordination induces positively-charged atomic Pd, which not only facilitates CH hydrogenation but also promotes CH desorption, thereby enabling a high conversion of CH to CH at room temperature while suppressing over-hydrogenation to CH.

摘要

环境条件下乙炔加氢制乙烯(AC - AHE)是一种极具前景的乙烯生产工艺,只需极少的额外能量输入,但由于在室温下难以同时活化乙炔和氢气,该工艺仍面临巨大挑战。在此,我们报道了一种在硫化钨表面由坚固的硫限制原子钯物种构成的高效AC - AHE工艺。该催化剂在25℃时乙炔转化率超过99%,乙烯选择性高达70%,在环境条件下乙烯的时空产率达到1123 mol mol⁻¹ h⁻¹,创历史记录,几乎是典型的PdAg/Al₂O₃催化剂的四倍,并且具有超过500小时的卓越稳定性。我们证明,Pd - S配位的限制作用诱导出带正电的原子钯,这不仅促进了C₂H₂加氢,还推动了C₂H₄脱附,从而在室温下实现了C₂H₂到C₂H₄的高转化率,同时抑制了过度加氢生成C₂H₆。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8d3/11530560/6752734be099/41467_2024_53481_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验