Suppr超能文献

调和关于大型语言模型环境影响的相互矛盾的说法。

Reconciling the contrasting narratives on the environmental impact of large language models.

机构信息

University of California, Riverside, USA.

University of California, Irvine, USA.

出版信息

Sci Rep. 2024 Nov 1;14(1):26310. doi: 10.1038/s41598-024-76682-6.

Abstract

The recent proliferation of large language models (LLMs) has led to divergent narratives about their environmental impacts. Some studies highlight the substantial carbon footprint of training and using LLMs, while others argue that LLMs can lead to more sustainable alternatives to current practices. We reconcile these narratives by presenting a comparative assessment of the environmental impact of LLMs vs. human labor, examining their relative efficiency across energy consumption, carbon emissions, water usage, and cost. Our findings reveal that, while LLMs have substantial environmental impacts, their relative impacts can be dramatically lower than human labor in the U.S. for the same output, with human-to-LLM ratios ranging from 40 to 150 for a typical LLM (Llama-3-70B) and from 1200 to 4400 for a lightweight LLM (Gemma-2B-it). While the human-to-LLM ratios are smaller with regard to human labor in India, these ratios are still between 3.4 and 16 for a typical LLM and between 130 and 1100 for a lightweight LLM. Despite the potential benefit of switching from humans to LLMs, economic factors may cause widespread adoption to lead to a new combination of human and LLM-driven work, rather than a simple substitution. Moreover, the growing size of LLMs may substantially increase their energy consumption and lower the human-to-LLM ratios, highlighting the need for further research to ensure the sustainability and efficiency of LLMs.

摘要

最近大型语言模型(LLMs)的大量出现导致了对其环境影响的不同说法。一些研究强调了训练和使用 LLM 所带来的巨大碳足迹,而另一些研究则认为 LLM 可以为当前实践提供更可持续的替代方案。我们通过对 LLM 与人工劳动力的环境影响进行比较评估,研究了它们在能源消耗、碳排放、水耗和成本方面的相对效率,从而调和了这些说法。我们的研究结果表明,虽然 LLM 对环境有重大影响,但它们对环境的相对影响在美国可能比人工劳动力低得多,对于典型的 LLM(Llama-3-70B)来说,人工到 LLM 的比率为 40 到 150,对于轻量级的 LLM(Gemma-2B-it)来说,这个比率为 1200 到 4400。虽然与印度的人工劳动力相比,人工到 LLM 的比率更小,但对于典型的 LLM 来说,这个比率仍在 3.4 到 16 之间,对于轻量级的 LLM 来说,这个比率在 130 到 1100 之间。尽管从人工劳动力转向 LLM 可能会带来好处,但经济因素可能会导致广泛采用,从而形成一种新的人工和 LLM 驱动工作的组合,而不是简单的替代。此外,LLM 的规模不断扩大可能会大大增加其能源消耗,并降低人工到 LLM 的比率,这凸显了进一步研究的必要性,以确保 LLM 的可持续性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e01/11530614/270671a53ce5/41598_2024_76682_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验