Suppr超能文献

肿瘤学中的大语言模型:综述

Large language models in oncology: a review.

作者信息

Chen David, Parsa Rod, Swanson Karl, Nunez John-Jose, Critch Andrew, Bitterman Danielle S, Liu Fei-Fei, Raman Srinivas

机构信息

Radiation Medicine Program, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada.

Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.

出版信息

BMJ Oncol. 2025 May 15;4(1):e000759. doi: 10.1136/bmjonc-2025-000759. eCollection 2025.

Abstract

Large language models (LLMs) have demonstrated emergent human-like capabilities in natural language processing, leading to enthusiasm about their integration in healthcare environments. In oncology, where synthesising complex, multimodal data is essential, LLMs offer a promising avenue for supporting clinical decision-making, enhancing patient care, and accelerating research. This narrative review aims to highlight the current state of LLMs in medicine; applications of LLMs in oncology for clinicians, patients, and translational research; and future research directions. Clinician-facing LLMs enable clinical decision support and enable automated data extraction from electronic health records and literature to inform decision-making. Patient-facing LLMs offer the potential for disseminating accessible cancer information and psychosocial support. However, LLMs face limitations that must be addressed before clinical adoption, including risks of hallucinations, poor generalisation, ethical concerns, and scope integration. We propose the incorporation of LLMs within compound artificial intelligence systems to facilitate adoption and efficiency in oncology. This narrative review serves as a non-technical primer for clinicians to understand, evaluate, and participate as active users who can inform the design and iterative improvement of LLM technologies deployed in oncology settings. While LLMs are not intended to replace oncologists, they can serve as powerful tools to augment clinical expertise and patient-centred care, reinforcing their role as a valuable adjunct in the evolving landscape of oncology.

摘要

大语言模型(LLMs)在自然语言处理中展现出了类似人类的新兴能力,这引发了人们对将其整合到医疗环境中的热情。在肿瘤学领域,综合复杂的多模态数据至关重要,大语言模型为支持临床决策、改善患者护理和加速研究提供了一条有前景的途径。本叙述性综述旨在强调大语言模型在医学中的当前状态;大语言模型在肿瘤学中对临床医生、患者和转化研究的应用;以及未来的研究方向。面向临床医生的大语言模型可提供临床决策支持,并能从电子健康记录和文献中自动提取数据以辅助决策。面向患者的大语言模型有潜力传播易于获取的癌症信息和心理社会支持。然而,在临床应用之前,大语言模型面临着一些必须解决的局限性,包括幻觉风险、泛化能力差、伦理问题和范围整合等。我们建议将大语言模型纳入复合人工智能系统,以促进其在肿瘤学中的应用和效率。本叙述性综述为临床医生提供了一个非技术性的入门指南,帮助他们理解、评估并作为积极用户参与其中,从而为肿瘤学环境中部署的大语言模型技术的设计和迭代改进提供信息。虽然大语言模型无意取代肿瘤学家,但它们可以作为强大的工具来增强临床专业知识和以患者为中心的护理,巩固其在不断发展的肿瘤学领域中作为有价值辅助工具的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a52a/12164365/4d2c486d34e7/bmjonc-4-1-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验