Erckert Kyra, Birkeneder Franz, Rost Burkhard
TUM School of Computation, Information and Technology, Bioinformatics & Computational Biology - i12, Boltzmannstr. 3, Garching, Munich 85748, Germany.
TUM Graduate School, Center of Doctoral Studies in Informatics and its Applications (CeDoSIA), Boltzmannstr. 11, Garching 85748, Germany.
Comput Struct Biotechnol J. 2025 Mar 11;27:1060-1066. doi: 10.1016/j.csbj.2025.02.042. eCollection 2025.
Many proteins function through ligand binding. Yet, reliable experimental binding data remains limited. Recent advances predict binding residues from sequences using protein Language Model embeddings. The AlphaFold Protein Structure Database, which has reliable 3D structure predictions from AlphaFold2, opens the way for graph neural networks that predict binding residues. Here, we introduce , a new method using Graph Neural Networks to predict whether a residue binds to any of three ligand classes: small molecules, metal ions, and nucleic macromolecules. Compared to state-of-the-art, this approach reduces the number of free parameters by almost 60 % at similar performance. Our findings also suggest that secondary and tertiary structure features from are easy to integrate into protein function prediction tasks that previously solely relied on protein Language Model embeddings.
许多蛋白质通过配体结合发挥功能。然而,可靠的实验结合数据仍然有限。最近的进展利用蛋白质语言模型嵌入从序列预测结合残基。AlphaFold蛋白质结构数据库拥有来自AlphaFold2的可靠三维结构预测,为预测结合残基的图神经网络开辟了道路。在这里,我们介绍了一种使用图神经网络预测残基是否与三类配体(小分子、金属离子和核酸大分子)中的任何一种结合的新方法。与现有技术相比,这种方法在性能相似的情况下将自由参数数量减少了近60%。我们的研究结果还表明,来自AlphaFold的二级和三级结构特征很容易整合到以前仅依赖蛋白质语言模型嵌入的蛋白质功能预测任务中。