Pan Guo-Zhu, Yang Ming, Zhou Jian, Yuan Hao, Miao Chun, Zhang Gang
School of Electrical and photoelectric Engineering, West Anhui University, Lu'an, 237012, China.
School of Physics and Optoelectronic Engineering, Anhui University, Hefei, 230601, China.
Sci Rep. 2024 Nov 1;14(1):26267. doi: 10.1038/s41598-024-76978-7.
Quantum entanglement acts as a crucial part in quantum computation and quantum information, hence quantifying unknown entanglement is an important task. Due to the fact that the amount of entanglement cannot be achieved directly by measuring any physical observables, it remains an open problem to quantify entanglement experimentally. In this work, we provide an effective way to quantify entanglement for the unknown quantum states via artificial neural networks. By choosing the expectation values of measurements as input features and the values of entanglement measures as labels, we train artificial neural network models to predict the entanglement for new quantum states accurately. Our method does not require the full information about unknown quantum states, which highlights the effectiveness and versatility of machine learning in exploring quantum entanglement.
量子纠缠在量子计算和量子信息中起着关键作用,因此量化未知纠缠是一项重要任务。由于纠缠量无法通过测量任何物理可观测量直接获得,通过实验量化纠缠仍然是一个悬而未决的问题。在这项工作中,我们提供了一种通过人工神经网络量化未知量子态纠缠的有效方法。通过选择测量的期望值作为输入特征,纠缠度量值作为标签,我们训练人工神经网络模型来准确预测新量子态的纠缠。我们的方法不需要关于未知量子态的全部信息,这突出了机器学习在探索量子纠缠方面的有效性和通用性。