Division of Physics and Astronomy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo-ku, Kyoto, 606-8502, Japan.
Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
Sci Rep. 2024 Nov 1;14(1):26336. doi: 10.1038/s41598-024-76409-7.
Mechanical failure of biological nanostructures due to sustained force application has been studied in great detail. In contrast, fatigue failure arising from repeated application of subcritical stresses has received little attention despite its prominent role in engineering and potentially biology. Here, paclitaxel-stabilized microtubules are up to 256 times bent into sinusoidal shapes of varying wavelength and the frequency of breaking events are observed. These experiments allow the calculation of fatigue life parameters for microtubules. Repeated buckling due to 12.5% compression-equal to the compression level experienced by microtubules in contracting cardiomyocytes - results in failure after in average 5 million cycles, whereas at 20.0% compression failure occurs after in average one thousand cycles. The fatigue strength (Basquin) exponent B is estimated as - 0.054±0.009.
生物纳米结构由于持续受力而发生的机械失效已经得到了深入研究。相比之下,尽管亚临界应力的反复作用在工程学中具有显著作用,并且可能在生物学中也具有重要作用,但由于其导致的疲劳失效却很少受到关注。在这项研究中,紫杉醇稳定的微管被弯曲成 256 倍,形成不同波长的正弦形状,并观察到断裂事件的频率。这些实验允许计算微管的疲劳寿命参数。由于 12.5%的压缩——相当于收缩心肌细胞中微管所经历的压缩水平——导致微管反复弯曲,平均经过 500 万次循环后发生失效,而在 20.0%的压缩下,平均经过一千次循环后发生失效。疲劳强度(巴斯奎因)指数 B 估计为-0.054±0.009。