Schaedel Laura, John Karin, Gaillard Jérémie, Nachury Maxence V, Blanchoin Laurent, Théry Manuel
Laboratoire de Physiologie Cellulaire et Végétale, Institut de Recherche en Technologie et Science pour le Vivant, UMR5168, CEA/INRA/CNRS/UGA, 38054 Grenoble, France.
Laboratoire Interdisciplinaire de Physique, CNRS/UGA Grenoble, 140 Rue de la Physique BP 87 38402 Saint-Martin-d'Hères, France.
Nat Mater. 2015 Nov;14(11):1156-63. doi: 10.1038/nmat4396. Epub 2015 Sep 7.
Microtubules--which define the shape of axons, cilia and flagella, and provide tracks for intracellular transport--can be highly bent by intracellular forces, and microtubule structure and stiffness are thought to be affected by physical constraints. Yet how microtubules tolerate the vast forces exerted on them remains unknown. Here, by using a microfluidic device, we show that microtubule stiffness decreases incrementally with each cycle of bending and release. Similar to other cases of material fatigue, the concentration of mechanical stresses on pre-existing defects in the microtubule lattice is responsible for the generation of more extensive damage, which further decreases microtubule stiffness. Strikingly, damaged microtubules were able to incorporate new tubulin dimers into their lattice and recover their initial stiffness. Our findings demonstrate that microtubules are ductile materials with self-healing properties, that their dynamics does not exclusively occur at their ends, and that their lattice plasticity enables the microtubules' adaptation to mechanical stresses.
微管——它们决定了轴突、纤毛和鞭毛的形状,并为细胞内运输提供轨道——能够被细胞内力高度弯曲,并且微管结构和硬度被认为会受到物理限制的影响。然而,微管如何耐受施加在它们身上的巨大力量仍然未知。在这里,通过使用微流控装置,我们表明微管硬度随着每次弯曲和释放循环而逐渐降低。与材料疲劳的其他情况类似,微管晶格中预先存在的缺陷上机械应力的集中导致了更广泛损伤的产生,这进一步降低了微管硬度。令人惊讶的是,受损的微管能够将新的微管蛋白二聚体纳入其晶格并恢复其初始硬度。我们的研究结果表明,微管是具有自我修复特性的韧性材料,它们的动态变化并非仅发生在其末端,并且它们的晶格可塑性使微管能够适应机械应力。