Suppr超能文献

深度学习中的抗噪声锐度感知最小化

Noise-resistant sharpness-aware minimization in deep learning.

作者信息

Su Dan, Jin Long, Wang Jun

机构信息

School of Information Science and Engineering, Lanzhou University, Lanzhou, China; School of Automation, Central South University, Changsha, China.

School of Information Science and Engineering, Lanzhou University, Lanzhou, China; Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong.

出版信息

Neural Netw. 2025 Jan;181:106829. doi: 10.1016/j.neunet.2024.106829. Epub 2024 Oct 24.

Abstract

Sharpness-aware minimization (SAM) aims to enhance model generalization by minimizing the sharpness of the loss function landscape, leading to a robust model performance. To protect sensitive information and enhance privacy, prevailing approaches add noise to models. However, additive noises would inevitably degrade the generalization and robustness of the model. In this paper, we propose a noise-resistant SAM method, based on a noise-resistant parameter update rule. We analyze the convergence and noise resistance properties of the proposed method under noisy conditions. We elaborate on experimental results with several networks on various benchmark datasets to demonstrate the advantages of the proposed method with respect to model generalization and privacy protection.

摘要

锐度感知最小化(SAM)旨在通过最小化损失函数景观的锐度来增强模型泛化能力,从而实现稳健的模型性能。为了保护敏感信息并增强隐私性,现有的方法会给模型添加噪声。然而,加性噪声不可避免地会降低模型的泛化能力和鲁棒性。在本文中,我们基于一种抗噪声参数更新规则,提出了一种抗噪声SAM方法。我们分析了该方法在噪声条件下的收敛性和抗噪声特性。我们详细阐述了在多个基准数据集上使用多个网络的实验结果,以证明所提方法在模型泛化和隐私保护方面的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验