Suppr超能文献

基于锐度感知最小化模型的视网膜血管分割方法。

A Retinal Vessel Segmentation Method Based on the Sharpness-Aware Minimization Model.

机构信息

School of Electronics and Information Engineering, Liaoning University of Technology, Jinzhou 121001, China.

出版信息

Sensors (Basel). 2024 Jun 30;24(13):4267. doi: 10.3390/s24134267.

Abstract

Retinal vessel segmentation is crucial for diagnosing and monitoring various eye diseases such as diabetic retinopathy, glaucoma, and hypertension. In this study, we examine how sharpness-aware minimization (SAM) can improve RF-UNet's generalization performance. RF-UNet is a novel model for retinal vessel segmentation. We focused our experiments on the digital retinal images for vessel extraction (DRIVE) dataset, which is a benchmark for retinal vessel segmentation, and our test results show that adding SAM to the training procedure leads to notable improvements. Compared to the non-SAM model (training loss of 0.45709 and validation loss of 0.40266), the SAM-trained RF-UNet model achieved a significant reduction in both training loss (0.094225) and validation loss (0.08053). Furthermore, compared to the non-SAM model (training accuracy of 0.90169 and validation accuracy of 0.93999), the SAM-trained model demonstrated higher training accuracy (0.96225) and validation accuracy (0.96821). Additionally, the model performed better in terms of sensitivity, specificity, AUC, and F1 score, indicating improved generalization to unseen data. Our results corroborate the notion that SAM facilitates the learning of flatter minima, thereby improving generalization, and are consistent with other research highlighting the advantages of advanced optimization methods. With wider implications for other medical imaging tasks, these results imply that SAM can successfully reduce overfitting and enhance the robustness of retinal vessel segmentation models. Prospective research avenues encompass verifying the model on vaster and more diverse datasets and investigating its practical implementation in real-world clinical situations.

摘要

视网膜血管分割对于诊断和监测各种眼病(如糖尿病视网膜病变、青光眼和高血压)至关重要。在这项研究中,我们研究了锐度感知最小化 (SAM) 如何提高 RF-UNet 的泛化性能。RF-UNet 是一种用于视网膜血管分割的新型模型。我们的实验重点是用于血管提取 (DRIVE) 数据集的数字视网膜图像,这是视网膜血管分割的基准,我们的测试结果表明,在训练过程中添加 SAM 可显著提高性能。与非 SAM 模型(训练损失 0.45709,验证损失 0.40266)相比,SAM 训练的 RF-UNet 模型在训练损失(0.094225)和验证损失(0.08053)方面都有显著降低。此外,与非 SAM 模型(训练准确率 0.90169,验证准确率 0.93999)相比,SAM 训练的模型表现出更高的训练准确率(0.96225)和验证准确率(0.96821)。此外,该模型在敏感性、特异性、AUC 和 F1 评分方面表现更好,表明对未见数据的泛化能力有所提高。我们的结果证实了 SAM 有助于学习更平坦的极小值,从而提高泛化能力的观点,并与其他强调先进优化方法优势的研究结果一致。由于对其他医学成像任务具有更广泛的影响,这些结果表明 SAM 可以成功减少过拟合并增强视网膜血管分割模型的鲁棒性。未来的研究方向包括在更大、更多样化的数据集上验证该模型,并研究其在实际临床情况下的实际应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2bfc/11244467/5c0664e9bf91/sensors-24-04267-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验