Suppr超能文献

通过干净感知的尖锐度感知最小化进行带噪声标签的学习。

Learning with noisy labels via clean aware sharpness aware minimization.

作者信息

Huang Bin, Xie Ying, Xu Chaoyang

机构信息

School of Business, Putian University, Putian, 351100, China.

School of Mechanical, Electrical, and Information Engineering, Putian University, Putian, 351100, China.

出版信息

Sci Rep. 2025 Jan 8;15(1):1350. doi: 10.1038/s41598-025-85679-8.

Abstract

Noise label learning has attracted considerable attention owing to its ability to leverage large amounts of inexpensive and imprecise data. Sharpness aware minimization (SAM) has shown effective improvements in the generalization performance in the presence of noisy labels by introducing adversarial weight perturbations in the model parameter space. However, our experimental observations have shown that the SAM generalization bottleneck primarily stems from the difficulty of finding the correct adversarial perturbation amidst the noisy data. To address this problem, a theoretical analysis of the mismatch in the direction of the parameter perturbation between noise and clean samples during the training process was conducted. Based on these analyses, a clean aware sharpness aware minimization algorithm known as CA-SAM is proposed. CA-SAM dynamically divides the training data into possible likely clean and noisy datasets based on the historical model output and uses likely clean samples to determine the direction of the parameter perturbation. By searching for flat minima in the loss landscape, the objective was to restrict the gradient perturbation direction of noisy samples to align them while preserving the clean samples. By conducting comprehensive experiments and scrutinizing benchmark datasets containing diverse noise patterns and levels, it is demonstrated that our CA-SAM outperforms certain innovative approaches by a substantial margin.

摘要

噪声标签学习因其能够利用大量廉价且不精确的数据而备受关注。锐度感知最小化(SAM)通过在模型参数空间中引入对抗性权重扰动,在存在噪声标签的情况下,其泛化性能有了显著提升。然而,我们的实验观察表明,SAM的泛化瓶颈主要源于在噪声数据中找到正确的对抗性扰动的困难。为了解决这个问题,我们对训练过程中噪声样本和干净样本之间参数扰动方向的不匹配进行了理论分析。基于这些分析,我们提出了一种名为CA - SAM的干净感知锐度感知最小化算法。CA - SAM根据历史模型输出动态地将训练数据划分为可能的干净和噪声数据集,并使用可能的干净样本确定参数扰动的方向。通过在损失景观中寻找平坦最小值,目标是限制噪声样本的梯度扰动方向,使其对齐,同时保留干净样本。通过进行全面的实验并仔细研究包含不同噪声模式和水平的基准数据集,结果表明我们的CA - SAM显著优于某些创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6982/11711201/91c03a72b671/41598_2025_85679_Fig1_HTML.jpg

相似文献

2
Noise-resistant sharpness-aware minimization in deep learning.深度学习中的抗噪声锐度感知最小化
Neural Netw. 2025 Jan;181:106829. doi: 10.1016/j.neunet.2024.106829. Epub 2024 Oct 24.
3
A fundus image classification framework for learning with noisy labels.眼底图像分类框架,用于学习带有噪声标签。
Comput Med Imaging Graph. 2023 Sep;108:102278. doi: 10.1016/j.compmedimag.2023.102278. Epub 2023 Jul 31.
4
Decentralized stochastic sharpness-aware minimization algorithm.去中心化随机锐化感知最小化算法。
Neural Netw. 2024 Aug;176:106325. doi: 10.1016/j.neunet.2024.106325. Epub 2024 Apr 17.
7
Sharpness-Aware Lookahead for Accelerating Convergence and Improving Generalization.用于加速收敛和提高泛化能力的锐度感知前瞻
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):10375-10388. doi: 10.1109/TPAMI.2024.3444002. Epub 2024 Nov 6.
10
Regularizing Scale-Adaptive Central Moment Sharpness for Neural Networks.用于神经网络的正则化尺度自适应中心矩锐度
IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6452-6466. doi: 10.1109/TNNLS.2022.3210045. Epub 2024 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验