Suppr超能文献

基于自噬依赖性细胞死亡的五基因预后模型预测肺腺癌的预后。

Five-gene prognostic model based on autophagy-dependent cell death for predicting prognosis in lung adenocarcinoma.

机构信息

Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.

出版信息

Sci Rep. 2024 Nov 2;14(1):26449. doi: 10.1038/s41598-024-76186-3.

Abstract

Non-small cell lung adenocarcinoma (LUAD) is the predominant form of lung cancer originating from lung epithelial cells, making it the most prevalent pathological type. Currently, reliable indicators for predicting treatment efficacy and disease prognosis are lacking. Despite extensive validation of autophagy-dependent cell death (ADCD) in solid tumor studies and its correlation with immunotherapy effectiveness and cancer prognosis, systematic research on ADCD-related genes in LUAD is limited. We utilized AddModuleScore, ssGSEA, and WGCNA to identify genes associated with ADCD across single-cell and bulk transcriptome datasets. The TCGA dataset, comprising 598 cases, was randomly divided into training and validation sets to develop an ADCD-related LUAD prediction model. Internal validation was performed using the TCGA validation set. For external validation, datasets GSE13213 (119 LUAD samples), GSE26939 (115 LUAD samples), GSE29016 (39 LUAD samples), and GSE30219 (86 LUAD samples) were employed. We evaluated the model's accuracy and effectiveness in predicting prognostic risk. Additionally, CIBERSORT, ESTIMATE, and ssGSEA techniques were used to explore immunological characteristics, drug response, and gene expression in LUAD. Real-time RT-PCR was conducted to assess variations in mRNA expression levels of the gene XCR1 between cancerous and normal tissues in 10 lung cancer patients. We identified 249 genes associated with autophagy-dependent cell death (ADCD) at both single-cell and bulk transcriptome levels. Univariate COX regression analysis revealed that 18 genes were significantly associated with overall survival (OS). Using LASSO-Cox analysis, we developed an ADCD signature based on five genes (BIRC3, TAP1, SLAMF1, XCR1, and HLA-DMB) and created the ADCD-related risk scoring system (ADCDRS). Validation of this model demonstrated its ability to predict disease prognosis and its correlation with clinical characteristics, immune cell infiltration, and the tumor microenvironment. To enhance clinical applicability, we integrated an ADCDRS nomogram. Furthermore, we identified potential drugs targeting specific risk subgroups. We successfully identified a model based on five ADCD genes to predict disease prognosis and treatment efficacy in LUAD, as well as to assess the tumor immune microenvironment. An efficient and practical ADCDRS nomogram was designed.

摘要

非小细胞肺腺癌(LUAD)是源自肺上皮细胞的肺癌主要形式,是最常见的病理类型。目前,缺乏可靠的预测治疗效果和疾病预后的指标。尽管在实体瘤研究中广泛验证了自噬依赖性细胞死亡(ADCD)及其与免疫治疗效果和癌症预后的相关性,但 LUAD 中 ADCD 相关基因的系统研究有限。我们使用 AddModuleScore、ssGSEA 和 WGCNA 从单细胞和批量转录组数据集中鉴定与 ADCD 相关的基因。TCGA 数据集包含 598 例病例,随机分为训练集和验证集,以开发 ADCD 相关 LUAD 预测模型。使用 TCGA 验证集进行内部验证。对于外部验证,使用数据集 GSE13213(119 例 LUAD 样本)、GSE26939(115 例 LUAD 样本)、GSE29016(39 例 LUAD 样本)和 GSE30219(86 例 LUAD 样本)进行。我们评估了模型在预测预后风险方面的准确性和有效性。此外,还使用 CIBERSORT、ESTIMATE 和 ssGSEA 技术探索 LUAD 中的免疫特征、药物反应和基因表达。使用实时 RT-PCR 评估了 10 例肺癌患者癌组织和正常组织中 XCR1 基因的 mRNA 表达水平变化。我们在单细胞和批量转录组水平上鉴定了 249 个与自噬依赖性细胞死亡(ADCD)相关的基因。单因素 COX 回归分析显示,18 个基因与总生存期(OS)显著相关。使用 LASSO-Cox 分析,我们基于 5 个基因(BIRC3、TAP1、SLAMF1、XCR1 和 HLA-DMB)开发了一个 ADCD 特征,并创建了 ADCD 相关风险评分系统(ADCDRS)。该模型的验证表明其能够预测疾病预后,并与临床特征、免疫细胞浸润和肿瘤微环境相关。为了增强临床适用性,我们整合了 ADCDRS 列线图。此外,我们还鉴定了针对特定风险亚组的潜在药物。我们成功地基于 5 个 ADCD 基因构建了一个预测 LUAD 疾病预后和治疗效果以及评估肿瘤免疫微环境的模型。设计了一个高效实用的 ADCDRS 列线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/93cb/11531468/096ee8e5e05d/41598_2024_76186_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验