文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于细胞周期相关特征的预后模型的开发与验证,用于预测肺腺癌患者的预后

Development and validation of prognostic models based on cell cycle-related signatures for predicting the prognosis of patients with lung adenocarcinoma.

作者信息

Huang Yuanping, Zhao Yanfei, Guan Yinghui

机构信息

Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China.

Department of Pediatrics, First Hospital of Jilin University, Changchun, China.

出版信息

Transl Cancer Res. 2025 May 30;14(5):2900-2915. doi: 10.21037/tcr-24-1479. Epub 2025 May 27.


DOI:10.21037/tcr-24-1479
PMID:40530147
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12170059/
Abstract

BACKGROUND: Lung adenocarcinoma (LUAD) represents the most prevalent histological subtype within lung cancer. Nevertheless, the risk of postoperative metastasis and recurrence remains a substantial concern. We aimed to build the cell cycle-related competing endogenous RNA (ceRNA) networks and potential prognosis prediction models of LUAD, which might provide a valuable reference for studying the prognosis of LUAD. METHODS: The RNA sequencing data of LUAD were procured from The Cancer Genome Atlas (TCGA) database and the differentially expressed RNAs were identified from the Ensembl genome browser 96 database [P<0.05 and |log2 fold change (FC)| >1]. The gene expression profile data were acquired from the Gene Expression Omnibus (GEO) repository. A gene set variation analysis was carried out to determine the differentially expressed genes (DEGs) (P<0.05) and a cell cycle-related ceRNA network of LUAD was constructed based on the DEGs. Least absolute shrinkage and selection operator (LASSO) analysis was conducted to acquire the optimized gene combination, a risk score (RS) prognostic risk prediction model was generated subsequently, and a Kaplan-Meier curve was developed to evaluate the efficacy of the RS model. Moreover, we constructed the 3- and 5-year prognostic models of nomogram using R3.6.1 "rms" package, the C-index was counted for accessing predictive capacity. Receiver operating characteristic (ROC) curves were used to evaluate the multiple prognostic risk prediction model. RESULTS: In total, we identified 240 DEGs and constructed the cell cycle-related ceRNA network of LUAD from datasets GSE50081 and GSE37745. Six optimal genes (, , , , and ) related to prognostic were obtained. The C-index values for 3- and 5-year prognostic nomogram models were 0.7665 and 0.7104, respectively, indicating highly accurate predictive capabilities. The area under the curve (AUC) of the combination of RS and clinical factors prognostic risk prediction model was 0.869 in TCGA and 0.770 in GSE50081 dataset. CONCLUSIONS: This research identified six prognostic biomarkers and built the prognostic prediction models of LUAD, which may enhance the comprehension of disease biology, serve as an effective prognostic tool for LUAD and drive novel therapy development potentially.

摘要

背景:肺腺癌(LUAD)是肺癌中最常见的组织学亚型。然而,术后转移和复发的风险仍然是一个重大问题。我们旨在构建LUAD的细胞周期相关竞争性内源性RNA(ceRNA)网络和潜在的预后预测模型,这可能为研究LUAD的预后提供有价值的参考。 方法:从癌症基因组图谱(TCGA)数据库获取LUAD的RNA测序数据,并从Ensembl基因组浏览器96数据库中鉴定差异表达的RNA[P<0.05且|log2倍数变化(FC)|>1]。基因表达谱数据从基因表达综合数据库(GEO)存储库中获取。进行基因集变异分析以确定差异表达基因(DEG)(P<0.05),并基于这些DEG构建LUAD的细胞周期相关ceRNA网络。进行最小绝对收缩和选择算子(LASSO)分析以获得优化的基因组合,随后生成风险评分(RS)预后风险预测模型,并绘制Kaplan-Meier曲线以评估RS模型的有效性。此外,我们使用R3.6.1“rms”包构建了列线图的3年和5年预后模型,计算C指数以评估预测能力。使用受试者工作特征(ROC)曲线评估多个预后风险预测模型。 结果:我们总共鉴定出240个DEG,并从数据集GSE50081和GSE37745构建了LUAD的细胞周期相关ceRNA网络。获得了六个与预后相关的最佳基因(、、、、和)。3年和5年预后列线图模型的C指数值分别为0.7665和0.7104,表明具有高度准确的预测能力。RS与临床因素预后风险预测模型组合在TCGA中的曲线下面积(AUC)为0.869,在GSE50081数据集中为0.770。 结论:本研究鉴定了六个预后生物标志物并构建了LUAD的预后预测模型,这可能会增强对疾病生物学的理解,作为LUAD的有效预后工具,并可能推动新疗法的开发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/a4aaf2043c02/tcr-14-05-2900-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/aa6770fa1a96/tcr-14-05-2900-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/2382a05b736b/tcr-14-05-2900-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/040ac975391f/tcr-14-05-2900-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/35f26c1860bb/tcr-14-05-2900-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/779bf707b9ed/tcr-14-05-2900-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/0370a3567f86/tcr-14-05-2900-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/a4aaf2043c02/tcr-14-05-2900-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/aa6770fa1a96/tcr-14-05-2900-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/2382a05b736b/tcr-14-05-2900-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/040ac975391f/tcr-14-05-2900-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/35f26c1860bb/tcr-14-05-2900-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/779bf707b9ed/tcr-14-05-2900-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/0370a3567f86/tcr-14-05-2900-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a1f/12170059/a4aaf2043c02/tcr-14-05-2900-f7.jpg

相似文献

[1]
Development and validation of prognostic models based on cell cycle-related signatures for predicting the prognosis of patients with lung adenocarcinoma.

Transl Cancer Res. 2025-5-30

[2]
Construction of a prognostic model for lung adenocarcinoma based on necroptosis genes and its exploration of the potential for tumor immunotherapy.

Transl Cancer Res. 2025-5-30

[3]
The mechanism of RNA methylation writing protein-related prognostic genes in lung adenocarcinoma based on bioinformatics.

Front Genet. 2025-6-2

[4]
Development and validation of a Log odds of negative lymph nodes/T stage ratio-based prognostic model for gastric cancer.

Front Oncol. 2025-6-3

[5]
Construction and validation of a prognostic model for glioma: an analysis based on mismatch repair-related genes and their correlation with clinicopathological features.

Transl Cancer Res. 2025-5-30

[6]
Identification of a novel prognostic gene signature in pleural mesothelioma: a study based on The Cancer Genome Atlas database and experimental validation.

Transl Cancer Res. 2025-5-30

[7]
Development of a prognostic nomogram and risk factor analysis for survival in -positive non-cardia gastric adenocarcinoma patients.

Transl Cancer Res. 2025-5-30

[8]
Liquid-Liquid Phase Separation in the Prognosis of Lung Adenocarcinoma: An Integrated Analysis.

Curr Cancer Drug Targets. 2025

[9]
Transcriptome analysis and artificial intelligence for predicting lymph node metastasis of esophageal squamous cell carcinoma.

J Thorac Dis. 2025-5-30

[10]
Integrated analysis of uterine leiomyosarcoma and leiomyoma utilizing TCGA and GEO data: a WGCNA and machine learning approach.

Transl Cancer Res. 2025-5-30

本文引用的文献

[1]
Prognostic value and potential biological function of in lung adenocarcinoma.

J Thorac Dis. 2024-11-30

[2]
Establishment of potential lncRNA-related hub genes involved competitive endogenous RNA in lung adenocarcinoma.

BMC Cancer. 2024-11-9

[3]
Five-gene prognostic model based on autophagy-dependent cell death for predicting prognosis in lung adenocarcinoma.

Sci Rep. 2024-11-2

[4]
Single-cell RNA sequencing reveals the communications between tumor microenvironment components and tumor metastasis in osteosarcoma.

Front Immunol. 2024

[5]
expression is associated with lung adenocarcinoma prognosis and immune infiltration and regulates lung adenocarcinoma cell proliferation and metastasis through the MAPK/ERK pathway.

J Thorac Dis. 2024-6-30

[6]
CDK1 Acts as a Prognostic Biomarker Associated with Immune Infiltration in Pan-Cancer, Especially in Gastrointestinal Tumors.

Curr Med Chem. 2024-6-28

[7]
Assessment of Gene Set Enrichment Analysis using curated RNA-seq-based benchmarks.

PLoS One. 2024

[8]
R-loop and diseases: the cell cycle matters.

Mol Cancer. 2024-4-27

[9]
CCND2 is a prognostic biomarker and correlates with immune infiltration in lung adenocarcinoma.

Transl Cancer Res. 2024-3-31

[10]
Construction of an immune predictive model and identification of TRIP6 as a prognostic marker and therapeutic target of CRC by integration of single-cell and bulk RNA-seq data.

Cancer Immunol Immunother. 2024-3-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索