Suppr超能文献

通过混合深度学习和水文建模增强数据稀疏地区的径流预测。

Enhancing runoff predictions in data-sparse regions through hybrid deep learning and hydrologic modeling.

作者信息

Chen Songliang, Feng Youcan, Li Hongyan, Ma Donghe, Mao Qinglin, Zhao Yilian, Liu Junhui

机构信息

Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.

Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China.

出版信息

Sci Rep. 2024 Nov 2;14(1):26450. doi: 10.1038/s41598-024-77678-y.

Abstract

Amidst growing concerns over climate-induced extreme weather events, precise flood forecasting becomes imperative, especially in regions like the Chaersen Basin where data scarcity compounds the challenge. Traditional hydrologic models, while reliable, often fall short in areas with insufficient observational data. This study introduces a hybrid modeling approach that combines the deep learning capabilities of the Informer model with the robust hydrological simulation by the WRF-Hydro model to enhance runoff predictions in such data-sparse regions. Trained initially on the diverse and extensive CAMELS dataset in the United States, the Informer model successfully applied its learned insights to predict runoff in the Chaersen Basin, leveraging transfer learning to bridge data gaps. Concurrently, the WRF-Hydro model, when integrated with The Global Forecast System (GFS) data, provided a basis for comparison and further refinement of flood prediction accuracy. The integration of these models resulted in a significant improvement in prediction precision. The synergy between the Informer's advanced pattern recognition and the physical modeling strength of the WRF-Hydro significantly enhanced the prediction accuracy. The final predictions for the years 2015 and 2016 demonstrated notable increases in the Nash-Sutcliffe Efficiency (NSE) and the Index of Agreement (IOA) metrics, confirming the effectiveness of the hybrid model in capturing complex hydrological dynamics during runoff predictions. Specifically, in 2015, the NSE improved from 0.5 with WRF-Hydro and 0.63 with the Informer model to 0.66 using the hybrid model, while in 2016, the NSE increased from 0.42 to 0.76. Similarly, the IOA in 2015 rose from 0.83 with WRF-Hydro and 0.84 with the Informer model to 0.87 using the hybrid approach, and in 2016, it increased from 0.78 to 0.92. Further investigation into the respective contributions of the WRF-Hydro and the Informer models revealed that the hybrid model achieved the optimal performance when the contribution of the Informer model was maintained between 60%-80%.

摘要

在对气候引发的极端天气事件的担忧日益加剧的背景下,精确的洪水预报变得至关重要,尤其是在像察尔森流域这样数据匮乏使挑战更加复杂的地区。传统水文模型虽然可靠,但在观测数据不足的地区往往存在不足。本研究引入了一种混合建模方法,该方法将Informer模型的深度学习能力与WRF-Hydro模型强大的水文模拟相结合,以增强此类数据稀疏地区的径流预测。Informer模型最初在美国多样且广泛的CAMELS数据集上进行训练,成功地将其所学知识应用于察尔森流域的径流预测,利用迁移学习来弥合数据差距。同时,WRF-Hydro模型与全球预报系统(GFS)数据集成时,为比较和进一步提高洪水预测精度提供了基础。这些模型的集成导致预测精度有了显著提高。Informer先进的模式识别与WRF-Hydro的物理建模优势之间的协同作用显著提高了预测精度。2015年和2016年的最终预测显示,纳什-萨特克利夫效率(NSE)和一致性指数(IOA)指标显著提高,证实了混合模型在径流预测期间捕捉复杂水文动态方面的有效性。具体而言,2015年,NSE从WRF-Hydro的0.5和Informer模型的0.63提高到混合模型的0.66,而在2016年,NSE从0.42提高到0.76。同样,2015年的IOA从WRF-Hydro的0.83和Informer模型的0.84提高到混合方法的0.87,2016年从0.78提高到0.92。对WRF-Hydro和Informer模型各自贡献的进一步研究表明,当Informer模型的贡献保持在60%-80%之间时,混合模型实现了最佳性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e15/11531571/c4764631a717/41598_2024_77678_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验