Suppr超能文献

利用变压器增强水文建模:以 24 小时内的河川流量预测为例。

Enhancing hydrological modeling with transformers: a case study for 24-h streamflow prediction.

机构信息

IIHR - Hydroscience & Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242-1585, USA E-mail:

IIHR - Hydroscience & Engineering, The University of Iowa, 100 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, Iowa 52242-1585, USA.

出版信息

Water Sci Technol. 2024 May;89(9):2326-2341. doi: 10.2166/wst.2024.110. Epub 2024 Apr 4.

Abstract

In this paper, we address the critical task of 24-h streamflow forecasting using advanced deep-learning models, with a primary focus on the transformer architecture which has seen limited application in this specific task. We compare the performance of five different models, including persistence, long short-term memory (LSTM), Seq2Seq, GRU, and transformer, across four distinct regions. The evaluation is based on three performance metrics: Nash-Sutcliffe Efficiency (NSE), Pearson's , and normalized root mean square error (NRMSE). Additionally, we investigate the impact of two data extension methods: zero-padding and persistence, on the model's predictive capabilities. Our findings highlight the transformer's superiority in capturing complex temporal dependencies and patterns in the streamflow data, outperforming all other models in terms of both accuracy and reliability. Specifically, the transformer model demonstrated a substantial improvement in NSE scores by up to 20% compared to other models. The study's insights emphasize the significance of leveraging advanced deep learning techniques, such as the transformer, in hydrological modeling and streamflow forecasting for effective water resource management and flood prediction.

摘要

本文致力于使用先进的深度学习模型解决 24 小时流量预测这一关键任务,重点关注在该特定任务中应用有限的转换器架构。我们比较了五种不同模型的性能,包括持续法、长短时记忆网络(LSTM)、序列到序列(Seq2Seq)、门控循环单元(GRU)和转换器,涵盖了四个不同的区域。评估基于三个性能指标:纳什-苏特克里夫效率(NSE)、皮尔逊相关系数和归一化均方根误差(NRMSE)。此外,我们还研究了两种数据扩展方法:零填充和持续法对模型预测能力的影响。研究结果突出了转换器在捕捉流量数据中复杂的时间依赖性和模式方面的优势,在准确性和可靠性方面均优于其他所有模型。特别是,与其他模型相比,转换器模型的 NSE 得分提高了高达 20%。该研究的结果强调了在水文建模和流量预测中利用先进的深度学习技术(如转换器)进行有效的水资源管理和洪水预测的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验