Kushida Takahiro, Nakamura Ryutaro, Matsuda Hiroaki, Chen Wenhao, Tanaka Kenichiro
College of Information Science and Engineering, Ritsumeikan University, 2-150 Iwakura-cho, Ibaraki, Osaka, 567-8570, Japan.
Sci Rep. 2024 Nov 2;14(1):26429. doi: 10.1038/s41598-024-77612-2.
Multispectral long-wave infrared (LWIR) ranging is a technique that estimates the distance to the object based on wavelength-dependent absorption of LWIR light through the air. Prior works require time-consuming measurements for calibration and solve non-linear inverse problems, which sometimes falls into a local minimum. In this paper, we propose a linear representation that connects the measurements and the scene parameters using the affine matrix. In this representation, the distance and the temperature of the object can be obtained as a closed-form solution and the calibration cost can be reduced to at least three observations. In real-world experiments, we demonstrate that our method is effective to reduce the calibration cost while keeping the precision of the depth estimation.
多光谱长波红外(LWIR)测距是一种基于LWIR光在空气中的波长依赖性吸收来估计到物体距离的技术。先前的工作需要耗时的测量来进行校准,并解决非线性反问题,而这些问题有时会陷入局部最小值。在本文中,我们提出了一种线性表示,它使用仿射矩阵将测量值与场景参数联系起来。在这种表示中,可以以封闭形式解获得物体的距离和温度,并且校准成本可以降低到至少三次观测。在实际实验中,我们证明了我们的方法在保持深度估计精度的同时,有效地降低了校准成本。