Suppr超能文献

塑造果蝇胚胎腹侧神经索的进化和力学原理。

The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord.

作者信息

Karkali Katerina, Martín-Blanco Enrique

机构信息

Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.

Instituto de Biología Molecular de Barcelona (CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain.

出版信息

Cells Dev. 2024 Dec;180:203973. doi: 10.1016/j.cdev.2024.203973. Epub 2024 Oct 26.

Abstract

The establishment of communication circuits requires bringing sources and targets into contact, either directly or indirectly. The Central Nervous System (CNS)'s ability to interpret the environment and generate precise responses depends on the functional efficiency of its neural network, which in turn relies on the 3D spatial organization of its constituents, mainly neurons and glia. Throughout evolution, sensory integration and motor response coordination became linked with the merging of the brain and nerve cord (NC) in the urbilaterian CNS. In most arthropods, the NC follows a specific topological plan and consists of a fixed number of neuromeres (thoracic and abdominal ganglia with commissural interconnections and a single terminal ganglion). The number, spacing, and fusion of neuromeres are species-specific and can change during embryogenesis or post-embryonic life. During Drosophila embryogenesis, the NC condenses along the Anterior-Posterior (AP) axis in a stereotypical manner, bringing neuromeres closer together. This process has revealed several key parameters, including its morphogenetic mechanics, the roles of various cellular, molecular, and structural components, and the functional purpose of its balanced design. The embryonic NC serves as a valuable model for investigating the ancient mechanisms underlying the structural organization, sensory integration, and motor coordination of the CNS. While many aspects of ganglionic fusion remain unknown, ongoing research promises to provide a more comprehensive understanding of the mechanical and evolutionary principles that govern it.

摘要

通信回路的建立需要使信号源和目标直接或间接接触。中枢神经系统(CNS)解释环境并产生精确反应的能力取决于其神经网络的功能效率,而神经网络的功能效率又依赖于其组成部分(主要是神经元和神经胶质细胞)的三维空间组织。在整个进化过程中,感觉整合和运动反应协调与原口动物中枢神经系统中脑和神经索(NC)的融合联系在一起。在大多数节肢动物中,神经索遵循特定的拓扑结构,由固定数量的神经节(具有连合连接的胸神经节和腹神经节以及单个终末神经节)组成。神经节的数量、间距和融合具有物种特异性,并且在胚胎发育或胚后生活期间可能会发生变化。在果蝇胚胎发育过程中,神经索沿前后(AP)轴以一种定型的方式凝聚,使神经节彼此靠近。这一过程揭示了几个关键参数,包括其形态发生机制、各种细胞、分子和结构成分的作用以及其平衡设计的功能目的。胚胎神经索是研究中枢神经系统结构组织、感觉整合和运动协调的古老机制的宝贵模型。虽然神经节融合的许多方面仍然未知,但正在进行的研究有望提供对其控制机制和进化原理更全面的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验