不同的进化策略在原肠胚形成过程中避免组织碰撞。
Divergent evolutionary strategies pre-empt tissue collision in gastrulation.
作者信息
Dey Bipasha, Kaul Verena, Kale Girish, Scorcelletti Maily, Takeda Michiko, Wang Yu-Chiun, Lemke Steffen
机构信息
RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany.
出版信息
Nature. 2025 Sep 3. doi: 10.1038/s41586-025-09447-4.
Metazoan development proceeds through a series of morphogenetic events that sculpt body plans and organ structures. In the early embryo, these processes occur concurrently such that forces generated in neighbouring tissues can impose mechanical stresses on each other, potentially disrupting development and consequently decreasing fitness. How organisms evolved mechanisms to mitigate inter-tissue mechanical conflicts remains unclear. Here, we combined phylogenetic survey, quantitative live imaging and functional mechanical perturbation to investigate mechanical stress management during gastrulation across the insect order of flies (Diptera). We identify two distinct cellular mechanisms that prevent tissue collision between the expanding head and trunk. In Cyclorrhapha, a monophyletic subgroup including Drosophila melanogaster, active out-of-plane deformation of a transient epithelial fold, called the cephalic furrow, acts as a mechanical sink to pre-empt head-trunk collision. Genetic and optogenetic ablation of the cephalic furrow leads to accumulation of compressive stress, tissue buckling at the head-trunk boundary and late-stage embryonic defects in the head and nervous system. By contrast, the non-cyclorrhaphan Chironomus riparius lacks cephalic furrow formation and instead undergoes widespread out-of-plane division that reduces the duration and spatial extent of head expansion. Re-orienting head mitosis from in-plane to out-of-plane in Drosophila partially suppresses tissue buckling, showing that it can function as an alternative mechanical sink. Our data suggest that mechanisms of mechanical stress management emerge and diverge in response to inter-tissue conflicts during early embryonic development.
后生动物的发育通过一系列形态发生事件进行,这些事件塑造了身体结构和器官结构。在早期胚胎中,这些过程同时发生,使得相邻组织产生的力会相互施加机械应力,这可能会扰乱发育并因此降低适应性。生物体如何进化出减轻组织间机械冲突的机制仍不清楚。在这里,我们结合系统发育调查、定量实时成像和功能性机械扰动,来研究双翅目昆虫(果蝇)原肠胚形成过程中的机械应力管理。我们确定了两种不同的细胞机制,它们可防止扩张的头部和躯干之间发生组织碰撞。在包括黑腹果蝇在内的单系亚群环裂亚目昆虫中,一种称为头沟的短暂上皮褶皱的平面外主动变形,充当了一个机械汇,以防止头部与躯干碰撞。对头沟进行基因消融和光遗传学消融会导致压缩应力积累、头躯干边界处的组织弯曲以及头部和神经系统的晚期胚胎缺陷。相比之下,非环裂亚目的摇蚊缺乏头沟形成,而是经历广泛的平面外分裂,这减少了头部扩张的持续时间和空间范围。在果蝇中将头部有丝分裂从平面内重新定向到平面外,部分抑制了组织弯曲,表明它可以作为一种替代的机械汇发挥作用。我们的数据表明,机械应力管理机制在早期胚胎发育过程中因组织间冲突而出现并分化。