Breithofer Johannes, Bulfon Dominik, Fawzy Nermeen, Tischitz Martin, Zitta Clara, Hartig Lennart, Grabner Gernot F, Pirchheim Anita, Hackl Hubert, Taschler Ulrike, Lass Achim, Tam-Amersdorfer Carmen, Strobl Herbert, Kratky Dagmar, Zimmermann Robert
Institute of Molecular Biosciences, University of Graz, Graz, Austria.
Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
J Lipid Res. 2024 Dec;65(12):100685. doi: 10.1016/j.jlr.2024.100685. Epub 2024 Oct 25.
In mammalian cells, glycerolipids are mainly synthesized using acyl-CoA-dependent mechanisms. The acyl-CoA-independent transfer of fatty acids between lipids, designated as transacylation reaction, represents an additional mechanism for lipid remodeling and synthesis pathways. Here, we demonstrate that human and mouse phospholipase A2 group IVD (PLA2G4D) catalyzes transacylase reactions using both phospholipids and acylglycerols as substrates. In the presence of monoglycerol and diacylglycerol (MAG and DAG), purified PLA2G4D generates DAG and triacylglycerol, respectively. The enzyme also transfers fatty acids between phospholipids and from phospholipids to acylglycerols. Overexpression of PLA2G4D in COS7 cells enhances the incorporation of polyunsaturated fatty acids into triacylglycerol stores and induces the accumulation of lysophospholipids. In the presence of exogenously added MAG, the enzyme strongly increases cellular DAG formation, while MAG levels are decreased. PLA2G4D is not or poorly detectable in commonly used cell lines. It is expressed in keratinocytes, where it is strongly upregulated by proinflammatory cytokines. Pla2g4d-deficient mouse keratinocytes exhibit complex lipidomic changes in response to cytokine treatment, indicating that PLA2G4D is involved in the remodeling of the lipidome under inflammatory conditions. Transcriptomic analysis revealed that PLA2G4D modulates fundamental biological processes including cell proliferation, differentiation, and signaling. Together, our observations demonstrate that PLA2G4D has broad substrate specificity for fatty acid donor and acceptor lipids, allowing the acyl-CoA-independent synthesis of both phospholipids and acylglycerols. Loss-of-function studies indicate that PLA2G4D affects metabolic and signaling pathways in keratinocytes, which is associated with complex lipidomic and transcriptomic alterations.
在哺乳动物细胞中,甘油脂质主要通过依赖酰基辅酶A的机制合成。脂质之间脂肪酸的不依赖酰基辅酶A的转移,即转酰基反应,是脂质重塑和合成途径的另一种机制。在此,我们证明人和小鼠的磷脂酶A2第IVD组(PLA2G4D)以磷脂和酰基甘油为底物催化转酰基酶反应。在单甘油和二酰基甘油(MAG和DAG)存在的情况下,纯化的PLA2G4D分别生成DAG和三酰基甘油。该酶还能在磷脂之间以及从磷脂向酰基甘油转移脂肪酸。PLA2G4D在COS7细胞中的过表达增强了多不饱和脂肪酸掺入三酰基甘油储存库的过程,并诱导溶血磷脂的积累。在外源添加MAG的情况下,该酶强烈增加细胞内DAG的形成,同时MAG水平降低。在常用细胞系中,PLA2G4D不可检测或检测水平很低。它在角质形成细胞中表达,在那里它受到促炎细胞因子的强烈上调。Pla2g4d缺陷型小鼠角质形成细胞在细胞因子处理后表现出复杂的脂质组学变化,表明PLA2G4D参与炎症条件下脂质组的重塑。转录组分析显示,PLA2G4D调节包括细胞增殖、分化和信号传导在内的基本生物学过程。总之,我们的观察结果表明,PLA2G4D对脂肪酸供体和受体脂质具有广泛的底物特异性,允许不依赖酰基辅酶A合成磷脂和酰基甘油。功能缺失研究表明,PLA2G4D影响角质形成细胞中的代谢和信号通路,这与复杂的脂质组学和转录组学改变有关。