Suppr超能文献

通过自适应谱随机卷积学习可泛化的视觉表示用于医学图像分割

Learning generalizable visual representation via adaptive spectral random convolution for medical image segmentation.

作者信息

Zhang Zuyu, Li Yan, Shin Byeong-Seok

机构信息

Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, South Korea.

Department of Electrical and Computer Engineering, Inha University, Incheon, 22212, South Korea.

出版信息

Comput Biol Med. 2023 Oct 24;167:107580. doi: 10.1016/j.compbiomed.2023.107580.

Abstract

Medical image segmentation models often fail to generalize well when applied to new datasets, hindering their usage in clinical practice. Existing random-convolution-based domain generalization approaches, which involve randomizing the convolutional kernel weights in the initial layers of CNN models, have shown promise in improving model generalizability. Nevertheless, the indiscriminate introduction of high-frequency noise during early feature extraction may pollute the critical fine details and degrade the model's performance on new datasets. To mitigate this problem, we propose an adaptive spectral random convolution (ASRConv) module designed to selectively randomize low-frequency features while avoiding the introduction of high-frequency artifacts. Unlike prior arts, ASRConv dynamically generates convolution kernel weights, enabling more effective control over feature frequencies than randomized kernels. Specifically, ASRConv achieves this selective randomization through a novel weight generation module conditioned on random noise inputs. The adversarial domain augmentation strategy guides the weight generation module in adaptively suppressing high-frequency noise during training, allowing ASRConv to improve feature diversity and reduce overfitting to specific domains. Extensive experimental results show that our proposed ASRConv method consistently outperforms the state-of-the-art methods, with average DSC improvements of 3.07% and 1.18% on fundus and polyp datasets, respectively. We also qualitatively demonstrate the robustness of our model against domain distribution shifts. All these results validate the effectiveness of the proposed ASRConv in learning domain-invariant representations for robust medical image segmentation.

摘要

医学图像分割模型在应用于新数据集时往往难以实现良好的泛化,这阻碍了它们在临床实践中的应用。现有的基于随机卷积的域泛化方法,即在卷积神经网络(CNN)模型的初始层中随机化卷积核权重,已显示出在提高模型泛化能力方面的潜力。然而,在早期特征提取过程中不加区分地引入高频噪声可能会污染关键的精细细节,并降低模型在新数据集上的性能。为了缓解这个问题,我们提出了一种自适应谱随机卷积(ASRConv)模块,旨在选择性地随机化低频特征,同时避免引入高频伪影。与现有技术不同,ASRConv动态生成卷积核权重,比随机化内核能够更有效地控制特征频率。具体来说,ASRConv通过一个基于随机噪声输入的新型权重生成模块实现这种选择性随机化。对抗域增强策略在训练过程中引导权重生成模块自适应地抑制高频噪声,使ASRConv能够提高特征多样性并减少对特定域的过拟合。大量实验结果表明,我们提出的ASRConv方法始终优于现有技术,在眼底和息肉数据集上的平均Dice相似系数(DSC)分别提高了3.07%和1.18%。我们还定性地证明了我们的模型对域分布变化的鲁棒性。所有这些结果验证了所提出的ASRConv在学习域不变表示以实现鲁棒医学图像分割方面的有效性。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验