Yu Caiyang, Wang Yixi, Tang Chenwei, Feng Wentao, Lv Jiancheng
College of Computer Science, Sichuan University, Chengdu, 610065, China.
Comput Biol Med. 2023 Oct 21;167:107579. doi: 10.1016/j.compbiomed.2023.107579.
Medical images are crucial in clinical practice, providing essential information for patient assessment and treatment planning. However, manual extraction of information from images is both time-consuming and prone to errors. The emergence of U-Net addresses this challenge by automating the segmentation of anatomical structures and pathological lesions in medical images, thereby significantly enhancing the accuracy of image interpretation and diagnosis. However, the performance of U-Net largely depends on its encoder-decoder structure, which requires researchers with knowledge of neural network architecture design and an in-depth understanding of medical images. In this paper, we propose an automatic U-Net Neural Architecture Search (NAS) algorithm using the differential evolutionary (DE) algorithm, named EU-Net, to segment critical information in medical images to assist physicians in diagnosis. Specifically, by presenting the variable-length strategy, the proposed EU-Net algorithm can sufficiently and automatically search for the neural network architecture without expertise. Moreover, the utilization of crossover, mutation, and selection strategies of DE takes account of the trade-off between exploration and exploitation in the search space. Finally, in the encoding and decoding phases of the proposed algorithm, different block-based and layer-based structures are introduced for architectural optimization. The proposed EU-Net algorithm is validated on two widely used medical datasets, i.e., CHAOS and BUSI, for image segmentation tasks. Extensive experimental results show that the proposed EU-Net algorithm outperforms the chosen peer competitors in both two datasets. In particular, compared to the original U-Net, our proposed method improves the metric mIou by at least 6%.
医学图像在临床实践中至关重要,为患者评估和治疗计划提供关键信息。然而,从图像中手动提取信息既耗时又容易出错。U-Net的出现通过自动分割医学图像中的解剖结构和病理病变来应对这一挑战,从而显著提高图像解释和诊断的准确性。然而,U-Net的性能在很大程度上取决于其编码器-解码器结构,这需要研究人员具备神经网络架构设计知识并深入了解医学图像。在本文中,我们提出了一种使用差分进化(DE)算法的自动U-Net神经架构搜索(NAS)算法,名为EU-Net,用于分割医学图像中的关键信息以协助医生进行诊断。具体而言,通过提出可变长度策略,所提出的EU-Net算法可以充分且自动地搜索神经网络架构,而无需专业知识。此外,DE的交叉、变异和选择策略的使用考虑了搜索空间中探索和利用之间的权衡。最后,在所提出算法的编码和解码阶段,引入了不同的基于块和基于层的结构进行架构优化。所提出的EU-Net算法在两个广泛使用的医学数据集即CHAOS和BUSI上进行了图像分割任务的验证。大量实验结果表明,所提出的EU-Net算法在两个数据集中均优于所选的同类竞争对手。特别是,与原始U-Net相比,我们提出的方法将指标mIou提高了至少6%。