Wu Yusheng, Lin Qiang, He Yang, Zeng XianWu, Cao Yongchun, Man ZhengXing, Liu Caihong, Hao Yusheng, Cai Zhengqi, Ji Jinshui, Huang Xiaodi
Key Laboratory of China's Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou, Gansu, China.
School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou, Gansu, China.
EJNMMI Phys. 2025 Jul 24;12(1):72. doi: 10.1186/s40658-025-00785-w.
Single-photon emission computed tomography (SPECT) plays a crucial role in detecting bone metastases from lung cancer. However, its low spatial resolution and lesion similarity to benign structures present significant challenges for accurate segmentation, especially for lesions of varying sizes.
We propose a deep learning-based segmentation framework that integrates conditional adversarial learning with a multi-scale feature extraction generator. The generator employs cascade dilated convolutions, multi-scale modules, and deep supervision, while the discriminator utilizes multi-scale L1 loss computed on image-mask pairs to guide segmentation learning.
The proposed model was evaluated on a dataset of 286 clinically annotated SPECT scintigrams. It achieved a Dice Similarity Coefficient (DSC) of 0.6671, precision of 0.7228, and recall of 0.6196 - outperforming both classical and recent adversarial segmentation models in multi-scale lesion detection, especially for small and clustered lesions.
Our results demonstrate that the integration of multi-scale feature learning with adversarial supervision significantly improves the segmentation of bone metastasis in SPECT imaging. This approach shows potential for clinical decision support in the management of lung cancer.
单光子发射计算机断层扫描(SPECT)在检测肺癌骨转移方面起着至关重要的作用。然而,其低空间分辨率以及与良性结构的病变相似性给准确分割带来了重大挑战,尤其是对于大小各异的病变。
我们提出了一种基于深度学习的分割框架,该框架将条件对抗学习与多尺度特征提取生成器相结合。生成器采用级联扩张卷积、多尺度模块和深度监督,而判别器利用在图像 - 掩码对上计算的多尺度L1损失来指导分割学习。
在一个包含286个临床注释的SPECT闪烁图的数据集上对所提出的模型进行了评估。它实现了0.6671的骰子相似系数(DSC)、0.7228的精度和0.6196的召回率——在多尺度病变检测方面优于经典和近期的对抗分割模型,特别是对于小的和聚集性病变。
我们的结果表明,多尺度特征学习与对抗监督的结合显著改善了SPECT成像中骨转移的分割。这种方法在肺癌管理的临床决策支持方面显示出潜力。