Suppr超能文献

用于脑磁图连接性估计的感兴趣区域(ROI)提取方法的影响:静息态数据研究的实用建议

The impact of ROI extraction method for MEG connectivity estimation: practical recommendations for the study of resting state data.

作者信息

Brkić Diandra, Sommariva Sara, Schuler Anna-Lisa, Pascarella Annalisa, Belardinelli Paolo, Isabella Silvia L, Pino Giovanni Di, Zago Sara, Ferrazzi Giulio, Rasero Javier, Arcara Giorgio, Marinazzo Daniele, Pellegrino Giovanni

机构信息

IRCCS San Camillo, Venice, Italy.

Dipartimento di Matematica, Università di Genova, Genova, Italy.

出版信息

Neuroimage. 2023 Oct 28:120424. doi: 10.1016/j.neuroimage.2023.120424.

Abstract

Magnetoencephalography and electroencephalography (M/EEG) seed-based connectivity analysis requires the extraction of measures from regions of interest (ROI). M/EEG ROI-derived source activity can be treated in different ways. It is possible, for instance, to average each ROI's time series prior to calculating connectivity measures. Alternatively, one can compute connectivity maps for each element of the ROI prior to dimensionality reduction to obtain a single map. The impact of these different strategies on connectivity results is still unclear. Here, we address this question within a large MEG resting state cohort (N=113) and within simulated data. We consider 68 ROIs (Desikan-Kiliany atlas), two measures of connectivity (phase locking value-PLV, and its imaginary counterpart- ciPLV), and three frequency bands (theta 4-8 Hz, alpha 9-12 Hz, beta 15-30 Hz). We compare four extraction methods: (i) mean, or (ii) PCA of the activity within the seed or ROI before computing connectivity, map of the (iii) average, or (iv) maximum connectivity after computing connectivity for each element of the seed. Hierarchical clustering is then applied to compare connectivity outputs across multiple strategies, followed by direct contrasts across extraction methods. Finally, the results are validated by using a set of realistic simulations. We show that ROI-based connectivity maps vary remarkably across strategies in terms of connectivity magnitude and spatial distribution. Dimensionality reduction procedures conducted after computing connectivity are more similar to each-other, while PCA before approach is the most dissimilar to other approaches. Although differences across methods are consistent across frequency bands, they are influenced by the connectivity metric and ROI size. Greater differences were observed for ciPLV than PLV, and in larger ROIs. Realistic simulations confirmed that after aggregation procedures are generally more accurate but have lower specificity (higher rate of false positive connections). Though computationally demanding, after dimensionality reduction strategies should be preferred when higher sensitivity is desired. Given the remarkable differences across aggregation procedures, caution is warranted in comparing results across studies applying different methods.

摘要

基于脑磁图和脑电图(M/EEG)的种子点连接性分析需要从感兴趣区域(ROI)提取测量值。M/EEG源自ROI的源活动可以用不同方式处理。例如,在计算连接性测量值之前,可以对每个ROI的时间序列求平均值。或者,在进行降维以获得单个图谱之前,可以为ROI的每个元素计算连接性图谱。这些不同策略对连接性结果的影响仍不清楚。在这里,我们在一个大型MEG静息态队列(N = 113)以及模拟数据中解决这个问题。我们考虑68个ROI(Desikan-Kiliany图谱)、两种连接性测量方法(锁相值-PLV及其虚部-ciPLV)以及三个频段(θ波4 - 8Hz、α波9 - 12Hz、β波15 - 30Hz)。我们比较四种提取方法:(i)均值,或(ii)在计算连接性之前对种子点或ROI内的活动进行主成分分析(PCA),(iii)在为种子点的每个元素计算连接性之后求平均的图谱,或(iv)最大连接性图谱。然后应用层次聚类来比较多种策略的连接性输出,接着对提取方法进行直接对比。最后,通过一组真实模拟对结果进行验证。我们表明,基于ROI的连接性图谱在连接性大小和空间分布方面因策略而异。在计算连接性之后进行的降维程序彼此更相似,而在计算之前进行PCA的方法与其他方法差异最大。尽管不同方法之间的差异在各频段是一致的,但它们受连接性度量和ROI大小的影响。观察到ciPLV比PLV的差异更大,并且在较大的ROI中差异更明显。真实模拟证实,聚合程序之后通常更准确,但特异性较低(假阳性连接率较高)。尽管计算量很大,但当需要更高的敏感性时,降维策略应更受青睐。鉴于聚合程序之间存在显著差异,在比较应用不同方法的研究结果时应谨慎。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验