Sommariva Sara, Subramaniyam Narayan Puthanmadam, Parkkonen Lauri
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.
MIDA, Dipartimento di Matematica, Dipartimento di Eccellenza 2023-2027, Università di Genova, Genoa, Italy.
Sci Rep. 2025 Feb 21;15(1):6404. doi: 10.1038/s41598-025-90166-1.
A typical approach to estimate connectivity from magnetoencephalographic (MEG) data consists of 1) computing a cortically-constrained, distributed source estimate, 2) dividing the cortex into parcels according to an anatomical atlas, 3) combining the source time courses within each parcel, and 4) computing a connectivity metric between these combined time courses. However, combining MEG signals to spatial mean activities of anatomically-defined parcels often leads to cancellation within and crosstalk between parcels. We present a method that divides the cortex into parcels whose activity can be faithfully represented by a single dipolar source while minimizing inter-parcel crosstalk. The method relies on unsupervised clustering of the MEG leadfields, also accounting for distances between the cortically-constrained sources to promote spatially contiguous parcels. The cluster each source point belongs to is determined by its k nearest-neighbour memberships. Inter-parcel crosstalk was minimized by assigning [Formula: see text] and a weight of 20%-40% to the spatial distances, leading to 60-120 parcels. Our approach, available through the Python package "megicparc", enables a compact yet anatomically-informed source-level representation of MEG data with a similar dimensionality as in the original sensor-level data. Such representation should enable significant improvements in source-space visualization of MEG features or in estimating functional connectivity.
一种从脑磁图(MEG)数据估计连通性的典型方法包括:1)计算皮层约束的分布式源估计;2)根据解剖图谱将皮层划分为若干脑区;3)合并每个脑区内的源时间历程;4)计算这些合并后的时间历程之间的连通性度量。然而,将MEG信号合并为解剖学定义脑区的空间平均活动,往往会导致脑区内信号抵消和脑区之间的串扰。我们提出了一种方法,将皮层划分为若干脑区,其活动可以由单个偶极子源忠实地表示,同时尽量减少脑区之间的串扰。该方法依赖于对MEG导联场进行无监督聚类,同时考虑皮层约束源之间的距离,以促进空间上相邻的脑区。每个源点所属的聚类由其k最近邻成员关系确定。通过为空间距离分配[公式:见原文]和20%-40%的权重,将脑区之间串扰降至最低,从而得到60-120个脑区。我们的方法可通过Python包“megicparc”获得,能够以与原始传感器级数据相似的维度,对MEG数据进行紧凑且具有解剖学信息的源级表示。这种表示应该能够在MEG特征的源空间可视化或估计功能连通性方面带来显著改进。