Suppr超能文献

采用聚类技术优化用于脑磁图的皮质分区。

Cortical parcellation optimized for magnetoencephalography with a clustering technique.

作者信息

Sommariva Sara, Subramaniyam Narayan Puthanmadam, Parkkonen Lauri

机构信息

Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland.

MIDA, Dipartimento di Matematica, Dipartimento di Eccellenza 2023-2027, Università di Genova, Genoa, Italy.

出版信息

Sci Rep. 2025 Feb 21;15(1):6404. doi: 10.1038/s41598-025-90166-1.

Abstract

A typical approach to estimate connectivity from magnetoencephalographic (MEG) data consists of 1) computing a cortically-constrained, distributed source estimate, 2) dividing the cortex into parcels according to an anatomical atlas, 3) combining the source time courses within each parcel, and 4) computing a connectivity metric between these combined time courses. However, combining MEG signals to spatial mean activities of anatomically-defined parcels often leads to cancellation within and crosstalk between parcels. We present a method that divides the cortex into parcels whose activity can be faithfully represented by a single dipolar source while minimizing inter-parcel crosstalk. The method relies on unsupervised clustering of the MEG leadfields, also accounting for distances between the cortically-constrained sources to promote spatially contiguous parcels. The cluster each source point belongs to is determined by its k nearest-neighbour memberships. Inter-parcel crosstalk was minimized by assigning [Formula: see text] and a weight of 20%-40% to the spatial distances, leading to 60-120 parcels. Our approach, available through the Python package "megicparc", enables a compact yet anatomically-informed source-level representation of MEG data with a similar dimensionality as in the original sensor-level data. Such representation should enable significant improvements in source-space visualization of MEG features or in estimating functional connectivity.

摘要

一种从脑磁图(MEG)数据估计连通性的典型方法包括:1)计算皮层约束的分布式源估计;2)根据解剖图谱将皮层划分为若干脑区;3)合并每个脑区内的源时间历程;4)计算这些合并后的时间历程之间的连通性度量。然而,将MEG信号合并为解剖学定义脑区的空间平均活动,往往会导致脑区内信号抵消和脑区之间的串扰。我们提出了一种方法,将皮层划分为若干脑区,其活动可以由单个偶极子源忠实地表示,同时尽量减少脑区之间的串扰。该方法依赖于对MEG导联场进行无监督聚类,同时考虑皮层约束源之间的距离,以促进空间上相邻的脑区。每个源点所属的聚类由其k最近邻成员关系确定。通过为空间距离分配[公式:见原文]和20%-40%的权重,将脑区之间串扰降至最低,从而得到60-120个脑区。我们的方法可通过Python包“megicparc”获得,能够以与原始传感器级数据相似的维度,对MEG数据进行紧凑且具有解剖学信息的源级表示。这种表示应该能够在MEG特征的源空间可视化或估计功能连通性方面带来显著改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b33/11845507/63256d74b2a6/41598_2025_90166_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验