Tanmathusorachai Wuttichai, Aulia Sofiannisa, Rinawati Mia, Chang Ling-Yu, Chang Chia-Yu, Huang Wei-Hsiang, Lin Ming-Hsien, Su Wei-Nien, Yuliarto Brian, Yeh Min-Hsin
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan.
ACS Appl Mater Interfaces. 2024 Nov 13;16(45):62022-62032. doi: 10.1021/acsami.4c13387. Epub 2024 Nov 4.
In response to energy challenges, rechargeable zinc-air batteries (RZABs) serve as an ideal platform for energy storage with a high energy density and safety. Nevertheless, addressing the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in RZAB requires highly active and robust electrocatalysts. High-entropy Prussian blue analogues (HEPBAs), formed by mixing diverse metals within a single lattice, exhibit enhanced stability due to their increased mixing entropy, which lowers the Gibbs free energy. HEPBAs innately enable sacrificial templating, an effective way to synthesize complex structures. Impressively, in this study, we successfully transform HEPBAs into exquisite multiphase (multimetallic alloy, metal carbide, and metal oxide) heterostructure nanoparticles through a controlled synthesis process. The elusive multiphase heterostructure nanoparticles manifested two active sites for selective ORR and OER. By integrating CNT into HEPBA-derived nanoparticles (HEPBA/CNT-800), the HEPBA/CNT-800 demonstrates superior activity toward both ORR ( = 0.77 V) in a 0.1 M KOH solution and the OER (η = 330 mV at 50 mA cm) in a 1 M KOH solution. The RZAB with a HEPBA/CNT-based air electrode demonstrated an open-circuit voltage of 1.39 V and provided a significant energy density of 71 mW cm. Moreover, the charge and discharge cycles lasting up to 40 h at a current density of 5 mA cm demonstrate its excellent stability. This work provides an alternative avenue for the rational design of HEPBA's derivative for a sustainable rechargeable metal-air battery platform.
为应对能源挑战,可充电锌空气电池(RZABs)作为一种具有高能量密度和安全性的储能理想平台。然而,解决RZAB中缓慢的氧还原反应(ORR)和析氧反应(OER)需要高活性和稳健的电催化剂。高熵普鲁士蓝类似物(HEPBAs)通过在单个晶格中混合多种金属形成,由于其混合熵增加而表现出增强的稳定性,这降低了吉布斯自由能。HEPBAs本身能够实现牺牲模板法,这是一种合成复杂结构的有效方法。令人印象深刻的是,在本研究中,我们通过可控合成过程成功地将HEPBAs转化为精致的多相(多金属合金、金属碳化物和金属氧化物)异质结构纳米颗粒。难以捉摸的多相异质结构纳米颗粒表现出用于选择性ORR和OER的两个活性位点。通过将碳纳米管(CNT)整合到源自HEPBAs的纳米颗粒(HEPBAs/CNT-800)中,HEPBAs/CNT-800在0.1 M KOH溶液中对ORR( = 0.77 V)和在1 M KOH溶液中对OER(在50 mA cm时η = 330 mV)均表现出优异的活性。具有基于HEPBAs/CNT空气电极的RZAB表现出1.39 V的开路电压,并提供了71 mW cm的显著能量密度。此外,在5 mA cm的电流密度下持续长达40 h的充放电循环证明了其优异的稳定性。这项工作为可持续可充电金属空气电池平台的HEPBAs衍生物的合理设计提供了一条替代途径。