Suppr超能文献

用于从硝酸盐电合成氨的高熵单原子纳米笼的通用合成方法。

General synthesis of high-entropy single-atom nanocages for electrosynthesis of ammonia from nitrate.

作者信息

Tang Sishuang, Xie Minghao, Yu Saerom, Zhan Xun, Wei Ruilin, Wang Maoyu, Guan Weixin, Zhang Bowen, Wang Yuyang, Zhou Hua, Zheng Gengfeng, Liu Yuanyue, Warner Jamie H, Yu Guihua

机构信息

Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.

Department of Chemistry, Fudan University, Shanghai, 200438, China.

出版信息

Nat Commun. 2024 Aug 13;15(1):6932. doi: 10.1038/s41467-024-51112-3.

Abstract

Given the growing emphasis on energy efficiency, environmental sustainability, and agricultural demand, there's a pressing need for decentralized and scalable ammonia production. Converting nitrate ions electrochemically, which are commonly found in industrial wastewater and polluted groundwater, into ammonia offers a viable approach for both wastewater treatment and ammonia production yet limited by low producibility and scalability. Here we report a versatile and scalable solution-phase synthesis of high-entropy single-atom nanocages (HESA NCs) in which Fe and other five metals-Co, Cu, Zn, Cd, and In-are isolated via cyano-bridges and coordinated with C and N, respectively. Incorporating and isolating the five metals into the matrix of Fe resulted in Fe-C active sites with a minimized symmetry of lattice as well as facilitated water dissociation and thus hydrogenation process. As a result, the Fe-HESA NCs exhibited a high selectivity toward NH from the electrocatalytic reduction of nitrate with a Faradaic efficiency of 93.4% while maintaining a high yield rate of 81.4 mg h mg.

摘要

鉴于对能源效率、环境可持续性和农业需求的日益重视,迫切需要分散式且可扩展的氨生产。将工业废水和受污染地下水中常见的硝酸根离子电化学转化为氨,为废水处理和氨生产提供了一种可行的方法,但受到低产率和可扩展性的限制。在此,我们报告了一种通用且可扩展的溶液相合成高熵单原子纳米笼(HESA NCs)的方法,其中铁和其他五种金属——钴、铜、锌、镉和铟——通过氰基桥隔离,并分别与碳和氮配位。将这五种金属掺入并隔离到铁的基质中,形成了晶格对称性最小化的铁-碳活性位点,并促进了水的解离以及氢化过程。结果,铁基高熵单原子纳米笼在硝酸根的电催化还原中对氨表现出高选择性,法拉第效率为93.4%,同时保持81.4 mg h mg的高产率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f4c/11322612/ee2b2002cf7f/41467_2024_51112_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验