文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用半监督生成对抗网络模型预测游离DNA中的体细胞突变起源

Predicting somatic mutation origins in cell-free DNA by semi-supervised GAN models.

作者信息

Palizban Fahimeh, Sarbishegi Mohammadmahdi, Kavousi Kaveh, Mehrmohamadi Mahya

机构信息

Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.

Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.

出版信息

Heliyon. 2024 Oct 15;10(20):e39379. doi: 10.1016/j.heliyon.2024.e39379. eCollection 2024 Oct 30.


DOI:10.1016/j.heliyon.2024.e39379
PMID:39492904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11530920/
Abstract

MOTIVATION: Distinguishing between pathogenic cancer-associated mutations and other somatic variants present in cell-free DNA (cfDNA) is one of the challenges in the field of liquid biopsy. This distinction is critical, since the misclassification of mutations stemming from clonal hematopoiesis (CH) as tumor-derived and vice versa could result in inaccurate diagnoses and inappropriate therapeutic interventions for patients. RESULTS: We addressed this by developing a specialized machine learning technique to differentiate tumor- or CH-related mutations in cfDNA. We established a comprehensive in-house reference catalog, comprising approximately 25,000 single nucleotide variants (SNVs), each linked to either tumor or CH origin. This reference serves as a foundation for training a deep learning model, which is structured on the semi-supervised generative adversarial network (SSGAN) architecture. By analyzing genomic coordinates and nucleotide composition of cfDNA variants, our model attains 95 % area under the curve (AUC) in classifying uncharacterized variants as CH or tumor-derived. In conclusion, our research emphasizes the potential of genomic feature prediction, using cfDNA data, to stand as a robust alternative to conventional multi-analyte sequencing methods. This approach not only enhances the accuracy of distinguishing CH from tumor mutations in liquid biopsy data, but also highlights the potential of advanced data analysis techniques and machine learning in genomics and personalized medicine. : https://github.com/FPalizban/SSGAN.

摘要

动机:区分游离DNA(cfDNA)中与癌症相关的致病突变和其他体细胞变异是液体活检领域的挑战之一。这种区分至关重要,因为将源于克隆性造血(CH)的突变误分类为肿瘤来源的突变,反之亦然,可能导致对患者的诊断不准确和治疗干预不当。 结果:我们通过开发一种专门的机器学习技术来区分cfDNA中与肿瘤或CH相关的突变来解决这个问题。我们建立了一个全面的内部参考目录,包含大约25000个单核苷酸变异(SNV),每个变异都与肿瘤或CH起源相关。该参考作为训练深度学习模型的基础,该模型基于半监督生成对抗网络(SSGAN)架构构建。通过分析cfDNA变异的基因组坐标和核苷酸组成,我们的模型在将未表征的变异分类为CH或肿瘤来源时,曲线下面积(AUC)达到95%。总之,我们的研究强调了利用cfDNA数据进行基因组特征预测作为传统多分析物测序方法有力替代方案的潜力。这种方法不仅提高了在液体活检数据中区分CH与肿瘤突变的准确性,还突出了先进数据分析技术和机器学习在基因组学和个性化医学中的潜力。: https://github.com/FPalizban/SSGAN

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/a818717df3fe/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/9a5556ee5fdc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/665e53acbc60/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/7a8ae2efabff/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/bc34a50f6f65/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/a818717df3fe/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/9a5556ee5fdc/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/665e53acbc60/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/7a8ae2efabff/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/bc34a50f6f65/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3193/11530920/a818717df3fe/fx1.jpg

相似文献

[1]
Predicting somatic mutation origins in cell-free DNA by semi-supervised GAN models.

Heliyon. 2024-10-15

[2]
Chemotherapy-associated clonal hematopoiesis mutations should be taken seriously in plasma cell-free DNA KRAS/NRAS/BRAF genotyping for metastatic colorectal cancer.

Clin Biochem. 2021-6

[3]
Comprehensive landscape and interference of clonal haematopoiesis mutations for liquid biopsy: A Chinese pan-cancer cohort.

J Cell Mol Med. 2021-11

[4]
High prevalence of clonal hematopoiesis-type genomic abnormalities in cell-free DNA in invasive gliomas after treatment.

Int J Cancer. 2021-6-1

[5]
Clinical significance of clonal hematopoiesis in the interpretation of blood liquid biopsy.

Mol Oncol. 2020-8

[6]
Wi-Fi Fingerprint Indoor Localization by Semi-Supervised Generative Adversarial Network.

Sensors (Basel). 2024-9-1

[7]
Clonal Hematopoiesis in Liquid Biopsy: From Biological Noise to Valuable Clinical Implications.

Cancers (Basel). 2020-8-14

[8]
The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients.

Clin Cancer Res. 2018-5-18

[9]
Clinical relevance of clonal hematopoiesis and its interference in cell-free DNA profiling of patients with gastric cancer.

Clin Chem Lab Med. 2024-1-26

[10]
False-Positive Plasma Genotyping Due to Clonal Hematopoiesis.

Clin Cancer Res. 2018-3-22

引用本文的文献

[1]
Liquid biopsy - a narrative review with an update on current US governmental clinical trials targeting immunotherapy.

Future Sci OA. 2025-12

[2]
Fragmentomic-based algorithm to computationally predict tumor-somatic, germline, and clonal hematopoiesis variant origin in liquid biopsy.

J Liq Biopsy. 2025-7-11

[3]
An artificial intelligence-based model for prediction of clonal hematopoiesis variants in cell-free DNA samples.

NPJ Precis Oncol. 2025-5-20

本文引用的文献

[1]
Clonal hematopoiesis detection in patients with cancer using cell-free DNA sequencing.

Sci Transl Med. 2023-3-29

[2]
Discovering the drivers of clonal hematopoiesis.

Nat Commun. 2022-7-23

[3]
Genome-wide analyses of 200,453 individuals yield new insights into the causes and consequences of clonal hematopoiesis.

Nat Genet. 2022-8

[4]
Liquid biopsy: a step closer to transform diagnosis, prognosis and future of cancer treatments.

Mol Cancer. 2022-3-18

[5]
Comprehensive landscape and interference of clonal haematopoiesis mutations for liquid biopsy: A Chinese pan-cancer cohort.

J Cell Mol Med. 2021-11

[6]
SomaMutDB: a database of somatic mutations in normal human tissues.

Nucleic Acids Res. 2022-1-7

[7]
Large-Scale Identification of Clonal Hematopoiesis and Mutations Recurrent in Blood Cancers.

Blood Cancer Discov. 2021-5

[8]
Cancer therapy shapes the fitness landscape of clonal hematopoiesis.

Nat Genet. 2020-10-26

[9]
Inherited causes of clonal haematopoiesis in 97,691 whole genomes.

Nature. 2020-10

[10]
White blood cell and cell-free DNA analyses for detection of residual disease in gastric cancer.

Nat Commun. 2020-1-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索