Suppr超能文献

一种基于人工智能的模型,用于预测游离DNA样本中的克隆性造血变异。

An artificial intelligence-based model for prediction of clonal hematopoiesis variants in cell-free DNA samples.

作者信息

Arango-Argoty Gustavo, Haghighi Marzieh, Sun Gerald J, Choe Elizabeth Y, Markovets Aleksandra, Barrett J Carl, Lai Zhongwu, Jacob Etai

机构信息

Oncology R&D, AstraZeneca, Waltham, MA, USA.

出版信息

NPJ Precis Oncol. 2025 May 20;9(1):147. doi: 10.1038/s41698-025-00921-w.

Abstract

Circulating tumor DNA is a critical biomarker in cancer diagnostics, but its accurate interpretation requires careful consideration of clonal hematopoiesis (CH), which can contribute to variants in cell-free DNA and potentially obscure true tumor-derived signals. Accurate detection of somatic variants of CH origin in plasma samples remains challenging in the absence of matched white blood cells sequencing. Here we present an open-source machine learning framework (MetaCH) which classifies variants in cfDNA from plasma-only samples as CH or tumor origin, surpassing state-of-the-art classification rates.

摘要

循环肿瘤DNA是癌症诊断中的关键生物标志物,但其准确解读需要仔细考虑克隆性造血(CH),这可能导致游离DNA出现变异,并可能掩盖真正的肿瘤来源信号。在缺乏匹配的白细胞测序的情况下,准确检测血浆样本中CH来源的体细胞变异仍然具有挑战性。在此,我们提出了一个开源机器学习框架(MetaCH),它可以将仅来自血浆样本的cfDNA变异分类为CH或肿瘤来源,分类率超过了当前的先进水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/81a9/12092662/fc148bcafdc9/41698_2025_921_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验