Suppr超能文献

整合大数据、人工智能和运动分析,用于帕金森病新兴的精准医学应用。

Integrating Big Data, Artificial Intelligence, and motion analysis for emerging precision medicine applications in Parkinson's Disease.

作者信息

Dipietro Laura, Eden Uri, Elkin-Frankston Seth, El-Hagrassy Mirret M, Camsari Deniz Doruk, Ramos-Estebanez Ciro, Fregni Felipe, Wagner Timothy

机构信息

Highland Instruments, Cambridge, MA USA.

Boston University, Boston, MA USA.

出版信息

J Big Data. 2024;11(1):155. doi: 10.1186/s40537-024-01023-3. Epub 2024 Oct 30.

Abstract

One of the key challenges in Big Data for clinical research and healthcare is how to integrate new sources of data, whose relation to disease processes are often not well understood, with multiple classical clinical measurements that have been used by clinicians for years to describe disease processes and interpret therapeutic outcomes. Without such integration, even the most promising data from emerging technologies may have limited, if any, clinical utility. This paper presents an approach to address this challenge, illustrated through an example in Parkinson's Disease (PD) management. We show how data from various sensing sources can be integrated with traditional clinical measurements used in PD; furthermore, we show how leveraging Big Data frameworks, augmented by Artificial Intelligence (AI) algorithms, can distinctively enrich the data resources available to clinicians. We showcase the potential of this approach in a cohort of 50 PD patients who underwent both evaluations with an Integrated Motion Analysis Suite (IMAS) composed of a battery of multimodal, portable, and wearable sensors and traditional Unified Parkinson's Disease Rating Scale (UPDRS)-III evaluations. Through techniques including Principal Component Analysis (PCA), elastic net regression, and clustering analysis we demonstrate how this combined approach can be used to improve clinical motor assessments and to develop personalized treatments. The scalability of our approach enables systematic data generation and analysis on increasingly larger datasets, confirming the integration potential of IMAS, whose use in PD assessments is validated herein, within Big Data paradigms. Compared to existing approaches, our solution offers a more comprehensive, multi-dimensional view of patient data, enabling deeper clinical insights and greater potential for personalized treatment strategies. Additionally, we show how IMAS can be integrated into established clinical practices, facilitating its adoption in routine care and complementing emerging methods, for instance, non-invasive brain stimulation. Future work will aim to augment our data repositories with additional clinical data, such as imaging and biospecimen data, to further broaden and enhance these foundational methodologies, leveraging the full potential of Big Data and AI.

摘要

临床研究和医疗保健领域大数据面临的关键挑战之一是如何将新的数据来源(其与疾病过程的关系往往尚未得到充分理解)与临床医生多年来用于描述疾病过程和解释治疗结果的多种经典临床测量方法相结合。没有这种整合,即使是来自新兴技术的最有前景的数据,其临床效用也可能有限(如果有的话)。本文提出了一种应对这一挑战的方法,并通过帕金森病(PD)管理的一个例子进行说明。我们展示了如何将来自各种传感源的数据与PD中使用的传统临床测量方法相结合;此外,我们还展示了如何利用由人工智能(AI)算法增强的大数据框架,显著丰富临床医生可用的数据资源。我们在一组50名PD患者中展示了这种方法的潜力,这些患者同时接受了由一系列多模态、便携式和可穿戴传感器组成的综合运动分析套件(IMAS)评估和传统的统一帕金森病评定量表(UPDRS)-III评估。通过主成分分析(PCA)、弹性网回归和聚类分析等技术,我们证明了这种组合方法可用于改善临床运动评估和制定个性化治疗方案。我们方法的可扩展性能够在越来越大的数据集上进行系统的数据生成和分析,证实了IMAS在大数据范式下的整合潜力,本文验证了其在PD评估中的应用。与现有方法相比,我们的解决方案提供了更全面、多维度的患者数据视图,能够实现更深入的临床洞察和个性化治疗策略的更大潜力。此外,我们展示了IMAS如何能够集成到既定的临床实践中,促进其在常规护理中的采用,并补充新兴方法,例如非侵入性脑刺激。未来的工作将旨在用额外的临床数据(如图像和生物标本数据)扩充我们的数据存储库,以进一步拓宽和增强这些基础方法,充分利用大数据和人工智能的全部潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6378/11525280/18300af498b7/40537_2024_1023_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验