Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Hokkaido, Japan.
RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103- 0027, Japan.
BMC Neurol. 2023 Oct 5;23(1):358. doi: 10.1186/s12883-023-03385-2.
The diagnosis of Parkinson's disease (PD) and evaluation of its symptoms require in-person clinical examination. Remote evaluation of PD symptoms is desirable, especially during a pandemic such as the coronavirus disease 2019 pandemic. One potential method to remotely evaluate PD motor impairments is video-based analysis. In this study, we aimed to assess the feasibility of predicting the Unified Parkinson's Disease Rating Scale (UPDRS) score from gait videos using a convolutional neural network (CNN) model.
We retrospectively obtained 737 consecutive gait videos of 74 patients with PD and their corresponding neurologist-rated UPDRS scores. We utilized a CNN model for predicting the total UPDRS part III score and four subscores of axial symptoms (items 27, 28, 29, and 30), bradykinesia (items 23, 24, 25, 26, and 31), rigidity (item 22) and tremor (items 20 and 21). We trained the model on 80% of the gait videos and used 10% of the videos as a validation dataset. We evaluated the predictive performance of the trained model by comparing the model-predicted score with the neurologist-rated score for the remaining 10% of videos (test dataset). We calculated the coefficient of determination (R) between those scores to evaluate the model's goodness of fit.
In the test dataset, the R values between the model-predicted and neurologist-rated values for the total UPDRS part III score and subscores of axial symptoms, bradykinesia, rigidity, and tremor were 0.59, 0.77, 0.56, 0.46, and 0.0, respectively. The performance was relatively low for videos from patients with severe symptoms.
Despite the low predictive performance of the model for the total UPDRS part III score, it demonstrated relatively high performance in predicting subscores of axial symptoms. The model approximately predicted the total UPDRS part III scores of patients with moderate symptoms, but the performance was low for patients with severe symptoms owing to limited data. A larger dataset is needed to improve the model's performance in clinical settings.
帕金森病(PD)的诊断和症状评估需要进行面对面的临床检查。远程评估 PD 症状是可取的,尤其是在 2019 年冠状病毒病(COVID-19)大流行等大流行期间。远程评估 PD 运动障碍的一种潜在方法是基于视频的分析。在这项研究中,我们旨在评估使用卷积神经网络(CNN)模型从步态视频中预测统一帕金森病评定量表(UPDRS)评分的可行性。
我们回顾性地获得了 74 名 PD 患者的 737 例连续步态视频及其相应的神经病学家评定的 UPDRS 评分。我们使用 CNN 模型预测总 UPDRS 第三部分评分和四个轴症状分项(项目 27、28、29 和 30)、运动迟缓(项目 23、24、25、26 和 31)、僵硬(项目 22)和震颤(项目 20 和 21)的评分。我们在 80%的步态视频上训练模型,并使用 10%的视频作为验证数据集。我们通过将模型预测的评分与剩余 10%的视频(测试数据集)的神经病学家评定的评分进行比较,来评估训练模型的预测性能。我们计算这些评分之间的决定系数(R),以评估模型的拟合优度。
在测试数据集上,模型预测的总 UPDRS 第三部分评分与神经病学家评定的评分之间的 R 值分别为 0.59、0.77、0.56、0.46 和 0.0,用于轴症状、运动迟缓、僵硬和震颤的分项评分。对于症状严重的患者的视频,性能相对较低。
尽管该模型对总 UPDRS 第三部分评分的预测性能较低,但在预测轴症状分项评分方面表现出相对较高的性能。该模型对中度症状患者的总 UPDRS 第三部分评分的预测大致准确,但对于症状严重的患者,由于数据有限,性能较差。需要更大的数据集来提高模型在临床环境中的性能。