Sharmin Shayla, Rashid Mohammad Riadur, Khatun Tania, Hasan Md Zahid, Uddin Mohammad Shorif
Department of Computer Science and Engineering, Daffodil International University, Dhaka, Bangladesh.
Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh.
Data Brief. 2024 Oct 4;57:110979. doi: 10.1016/j.dib.2024.110979. eCollection 2024 Dec.
The retina is a critical component of the eye responsible for capturing visual information, making the importance of retinal health for clear vision. Various eye diseases, such as age-related macular degeneration, diabetic retinopathy, and glaucoma, can severely impair vision and even lead to blindness if not detected and treated early. Therefore, automated systems using machine learning and computer vision techniques have shown promise in the early detection and management of these diseases, reducing the risk of vision loss. In this context, to facilitate the development and evaluation of machine learning models for eye disease detection, we introduced a comprehensive dataset which was collected during a span of eight months from Anawara Hamida Eye Hospital & B.N.S.B. Zahurul Haque Eye Hospital using Color Fundus Photography machine. The dataset has two categories of data: color fundus photographs and anterior segment images. The color fundus photographs categorized into nine classes: Diabetic Retinopathy, Glaucoma, Macular Scar, Optic Disc Edema, Central Serous Chorioretinopathy (CSCR), Retinal Detachment, Retinitis Pigmentosa, Myopia, Healthy and anterior segment images has one class: Pterygium. This dataset comprises 5335 primary images. By providing a rich and diverse collection of color fundus photographs, this dataset serves as a valuable resource for researchers and clinicians in the field of ophthalmology for the automatic detection of nine different classes of eye diseases.
视网膜是眼睛的关键组成部分,负责捕捉视觉信息,这使得视网膜健康对于清晰视力至关重要。各种眼部疾病,如年龄相关性黄斑变性、糖尿病性视网膜病变和青光眼,如果不及早发现和治疗,会严重损害视力甚至导致失明。因此,使用机器学习和计算机视觉技术的自动化系统在这些疾病的早期检测和管理方面显示出了前景,降低了视力丧失的风险。在此背景下,为了促进用于眼部疾病检测的机器学习模型的开发和评估,我们引入了一个综合数据集,该数据集是在八个月的时间里从阿纳瓦拉·哈米达眼科医院和B.N.S.B.扎胡鲁勒·哈克眼科医院使用彩色眼底照相机收集的。该数据集有两类数据:彩色眼底照片和眼前节图像。彩色眼底照片分为九类:糖尿病性视网膜病变、青光眼、黄斑瘢痕、视盘水肿、中心性浆液性脉络膜视网膜病变(CSCR)、视网膜脱离、视网膜色素变性、近视、健康,眼前节图像有一类:翼状胬肉。这个数据集包含5335张原始图像。通过提供丰富多样的彩色眼底照片集合,该数据集为眼科领域的研究人员和临床医生自动检测九种不同类型的眼部疾病提供了宝贵资源。