Suppr超能文献

关键材料的需求数据预测。

Forecasting demand data for critical materials.

作者信息

Foster Kyle, Mathur Nehika

机构信息

Miami University, 501 E. High Street, Oxford, OH 45056, United States.

National Institute of Standards & Technology, 100 Bureau Drive, Gaithersburg, MD 20899, United States.

出版信息

Data Brief. 2024 Oct 9;57:111013. doi: 10.1016/j.dib.2024.111013. eCollection 2024 Dec.

Abstract

Gallium, Indium and Cobalt are critical materials that are vital to ramping up the adoption of clean energy technologies such as solar photovoltaics (PVs), electric vehicles (EVs) and wind turbines (WTs). Like other critical materials, they are prone to supply chain risks resulting in future uncertainty associated with supply, demand and price parameters. Understanding current and future market dynamics will mitigate this uncertainty. This article applies the Bass Diffusion Model to generate demand projections as three data sets each for Gallium, Indium and Cobalt until 2050. Generating and compiling these data are one step in enabling insights on future market parameters of the considered materials and the clean energy products that rely on their availability. Going forward this data has the potential to contribute towards understanding other market parameters such as supply and prices.

摘要

镓、铟和钴是关键材料,对于加速采用太阳能光伏(PV)、电动汽车(EV)和风力涡轮机(WT)等清洁能源技术至关重要。与其他关键材料一样,它们容易受到供应链风险的影响,从而导致未来供应、需求和价格参数方面的不确定性。了解当前和未来的市场动态将减轻这种不确定性。本文应用巴斯扩散模型生成需求预测,直至2050年,分别为镓、铟和钴各生成三个数据集。生成和汇编这些数据是深入了解所考虑材料以及依赖其供应的清洁能源产品未来市场参数的一个步骤。展望未来,这些数据有可能有助于理解其他市场参数,如供应和价格。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d85f/11530595/7772dbaea297/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验