Sheng Junda, Strohmer Thomas
Department of Mathematics, University of California, Davis, CA 95616-5270, USA.
Department of Mathematics and Center of Data Science and Artificial Intelligence Research, University of California, Davis, CA 95616-5270, USA.
J Mach Learn. 2024;3(1):64-106. doi: 10.4208/jml.230624.
The stochastic block model is a canonical random graph model for clustering and community detection on network-structured data. Decades of extensive study on the problem have established many profound results, among which the phase transition at the Kesten-Stigum threshold is particularly interesting both from a mathematical and an applied standpoint. It states that no estimator based on the network topology can perform substantially better than chance on sparse graphs if the model parameter is below a certain threshold. Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised setting, such a fundamental limitation will disappear completely. We prove that with an arbitrary fraction of the labels revealed, the detection problem is feasible throughout the parameter domain. Moreover, we introduce two efficient algorithms, one combinatorial and one based on optimization, to integrate label information with graph structures. Our work brings a new perspective to the stochastic model of networks and semidefinite program research.
随机块模型是一种用于对网络结构数据进行聚类和社区检测的典型随机图模型。数十年来对该问题的广泛研究已经建立了许多深刻的结果,其中在凯斯滕 - 斯蒂古姆阈值处的相变从数学和应用的角度来看都特别有趣。它表明,如果模型参数低于某个阈值,那么基于网络拓扑的任何估计器在稀疏图上的表现都不会比随机猜测好太多。然而,如果我们将视野稍微扩展到普遍存在的半监督设置,这样一个基本限制将完全消失。我们证明,在揭示任意比例的标签的情况下,检测问题在整个参数域内都是可行的。此外,我们引入了两种高效算法,一种是组合算法,另一种基于优化算法,用于将标签信息与图结构相结合。我们的工作为网络的随机模型和半定规划研究带来了新的视角。