Suppr超能文献

具有低期望秩的随机矩阵的逐元素特征向量分析

ENTRYWISE EIGENVECTOR ANALYSIS OF RANDOM MATRICES WITH LOW EXPECTED RANK.

作者信息

Abbe Emmanuel, Fan Jianqing, Wang Kaizheng, Zhong Yiqiao

机构信息

PACM and Department of EE, Princeton University, Princeton, NJ 08544, USA.

Department of ORFE, Princeton University, Princeton, NJ 08544, USA.

出版信息

Ann Stat. 2020 Jun;48(3):1452-1474. doi: 10.1214/19-aos1854. Epub 2020 Jul 17.

Abstract

Recovering low-rank structures via eigenvector perturbation analysis is a common problem in statistical machine learning, such as in factor analysis, community detection, ranking, matrix completion, among others. While a large variety of bounds are available for average errors between empirical and population statistics of eigenvectors, few results are tight for entrywise analyses, which are critical for a number of problems such as community detection. This paper investigates entrywise behaviors of eigenvectors for a large class of random matrices whose expectations are low-rank, which helps settle the conjecture in Abbe et al. (2014b) that the spectral algorithm achieves exact recovery in the stochastic block model without any trimming or cleaning steps. The key is a first-order approximation of eigenvectors under the norm: where { } and are eigenvectors of a random matrix and its expectation , respectively. The fact that the approximation is both tight and linear in facilitates sharp comparisons between and . In particular, it allows for comparing the signs of and even if is large. The results are further extended to perturbations of eigenspaces, yielding new -type bounds for synchronization ( -spiked Wigner model) and noisy matrix completion.

摘要

通过特征向量扰动分析恢复低秩结构是统计机器学习中的一个常见问题,例如在因子分析、社区检测、排序、矩阵补全等等。虽然对于特征向量的经验统计量和总体统计量之间的平均误差有各种各样的界,但对于逐元素分析来说,很少有结果是紧密的,而逐元素分析对于诸如社区检测等许多问题至关重要。本文研究了一类期望为低秩的随机矩阵特征向量的逐元素行为,这有助于解决阿贝等人(2014b)的猜想,即在随机块模型中,谱算法无需任何修剪或清理步骤就能实现精确恢复。关键在于在 范数下特征向量的一阶近似:其中{ }和 分别是随机矩阵 及其期望 的特征向量。该近似在 中既是紧密的又是线性的这一事实便于对 和 进行精确比较。特别地,即使 很大,它也允许比较 和 的符号。结果进一步扩展到特征子空间的扰动,为同步( -尖峰维格纳模型)和噪声矩阵补全产生了新的 -型界。

相似文献

6
Asymptotic Theory of Eigenvectors for Random Matrices with Diverging Spikes.具有发散尖峰的随机矩阵特征向量的渐近理论
J Am Stat Assoc. 2022;117(538):996-1009. doi: 10.1080/01621459.2020.1840990. Epub 2020 Dec 8.
9
Eigenvector dynamics under perturbation of modular networks.模块化网络扰动下的特征向量动力学
Phys Rev E. 2016 Jun;93(6):062312. doi: 10.1103/PhysRevE.93.062312. Epub 2016 Jun 20.

引用本文的文献

1
Estimating Higher-Order Mixed Memberships via the Tensor Perturbation Bound.通过张量扰动界估计高阶混合成员关系
J Am Stat Assoc. 2025;120:1214-1224. doi: 10.1080/01621459.2024.2404265. Epub 2024 Nov 20.
3
Statistical Significance of Clustering with Multidimensional Scaling.多维缩放聚类的统计显著性
J Comput Graph Stat. 2024;33(1):219-230. doi: 10.1080/10618600.2023.2219708. Epub 2023 Jul 20.
5
Subject clustering by IF-PCA and several recent methods.通过IF-PCA和几种近期方法进行主题聚类。
Front Genet. 2023 May 23;14:1166404. doi: 10.3389/fgene.2023.1166404. eCollection 2023.
6
Asymptotic Theory of Eigenvectors for Random Matrices with Diverging Spikes.具有发散尖峰的随机矩阵特征向量的渐近理论
J Am Stat Assoc. 2022;117(538):996-1009. doi: 10.1080/01621459.2020.1840990. Epub 2020 Dec 8.

本文引用的文献

3
Phase transitions in semidefinite relaxations.半定松弛中的相变。
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2218-23. doi: 10.1073/pnas.1523097113. Epub 2016 Mar 21.
5
Spectral redemption in clustering sparse networks.聚类稀疏网络中的谱救赎。
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20935-40. doi: 10.1073/pnas.1312486110. Epub 2013 Nov 25.
7
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.模块化网络随机块模型的渐近分析及其算法应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
8
Angular Synchronization by Eigenvectors and Semidefinite Programming.基于特征向量和半定规划的角度同步
Appl Comput Harmon Anal. 2011 Jan 30;30(1):20-36. doi: 10.1016/j.acha.2010.02.001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验