智能纳米催化剂介导的溶酶体消融途径以协调肿瘤治疗的放大效应。

Intelligent nanocatalyst mediated lysosomal ablation pathway to coordinate the amplification of tumor treatment.

作者信息

Pei Mingliang, Guan Xin, Zhao De, Yang Fan, Dong Yun, Huai Manxiu, Ge Wensong, Hou Xiaodong, Chu Wenfeng, Wang Kai, Chen Jie, Xu Huixiong

机构信息

Department of Medical Ultrasound and Center of Minimally Invasive Treatment for Tumor, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yan-chang-zhong Road, Shanghai, 200072, PR China.

Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.

出版信息

Mater Today Bio. 2024 Oct 16;29:101299. doi: 10.1016/j.mtbio.2024.101299. eCollection 2024 Dec.

Abstract

The production of reactive oxygen species (ROS) is susceptible to external excitation or insufficient supply of related participants (, hydrogen peroxide (HO) and sensitizer), liming ROS-driven tumor treatment. Additionally, the lysosomal retention effect severely hinders the utilization of ROS-based nanosystems and severely restricted the therapeutic effect of tumors. Therefore, first reported herein an intelligent nanocatalyst, TCPP-Cu@MnO ((Mn)(Mn)(Mn)O), and proposed a programmed ROS amplification strategy to treat tumors. Initially, the acidity-unlocked nanocatalyst was voluntarily triggered to generate abundant singlet oxygen (O) to mediate acid lysosomal ablation to assist nanocatalyst escape and partially induce lysosomal death, a stage known as lysosome-driven therapy. More unexpectedly, the high-yielding production of O in acid condition (pH 5.0) was showed compared to neutral media (pH 7.4), with a difference of about 204 times between the two. Subsequently, the escaping nanocatalyst further activated HO-mediated O and hydroxyl radical (•OH) generation and glutathione (GSH) consumption for further accentuation tumor therapy efficiency, which is based on the Fenton-like reaction and Russell reaction mechanisms. Therefore, in this system, a program-activatable TCPP-Cu@MnO nanocatalyst, was proposed to efficiently destruct organelle-lysosome O inducing, and stimulated HO conversion into highly toxic O and •OH in cytoplasm, constituting an attractive method to overcome limitations of current ROS treatment.

摘要

活性氧(ROS)的产生易受外部激发或相关参与物(如过氧化氢(H₂O₂)和敏化剂)供应不足的影响,限制了ROS驱动的肿瘤治疗。此外,溶酶体滞留效应严重阻碍了基于ROS的纳米系统的利用,并严重限制了肿瘤的治疗效果。因此,本文首次报道了一种智能纳米催化剂TCPP-Cu@MnO₂((Mn)(Mn)(Mn)O₂),并提出了一种程序性ROS放大策略来治疗肿瘤。最初,酸度解锁的纳米催化剂被自动触发以产生大量单线态氧(¹O₂)来介导酸性溶酶体消融,以协助纳米催化剂逃逸并部分诱导溶酶体死亡,这一阶段称为溶酶体驱动疗法。更出乎意料的是,与中性介质(pH 7.4)相比,在酸性条件(pH 5.0)下¹O₂的产量更高,两者之间相差约204倍。随后,逃逸的纳米催化剂进一步激活H₂O₂介导的¹O₂和羟基自由基(•OH)的产生以及谷胱甘肽(GSH)的消耗,以进一步提高肿瘤治疗效率,这是基于类芬顿反应和拉塞尔反应机制。因此,在该系统中,提出了一种程序可激活的TCPP-Cu@MnO₂纳米催化剂,以有效破坏细胞器-溶酶体诱导的¹O₂,并刺激H₂O₂在细胞质中转化为高毒性的¹O₂和•OH,构成了一种克服当前ROS治疗局限性的有吸引力的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c429/11530759/38386c149949/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索