文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

芬顿/类芬顿金属基纳米材料与氧化酶结合,实现协同肿瘤治疗。

Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy.

机构信息

Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.

Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.

出版信息

J Nanobiotechnology. 2021 Oct 16;19(1):325. doi: 10.1186/s12951-021-01074-1.


DOI:10.1186/s12951-021-01074-1
PMID:34656118
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8520258/
Abstract

Chemodynamic therapy (CDT) catalyzed by transition metal and starvation therapy catalyzed by intracellular metabolite oxidases are both classic tumor treatments based on nanocatalysts. CDT monotherapy has limitations including low catalytic efficiency of metal ions and insufficient endogenous hydrogen peroxide (HO). Also, single starvation therapy shows limited ability on resisting tumors. The "metal-oxidase" cascade catalytic system is to introduce intracellular metabolite oxidases into the metal-based nanoplatform, which perfectly solves the shortcomings of the above-mentioned monotherapiesIn this system, oxidases can not only consume tumor nutrients to produce a "starvation effect", but also provide CDT with sufficient HO and a suitable acidic environment, which further promote synergy between CDT and starvation therapy, leading to enhanced antitumor effects. More importantly, the "metal-oxidase" system can be combined with other antitumor therapies (such as photothermal therapy, hypoxia-activated drug therapy, chemotherapy, and immunotherapy) to maximize their antitumor effects. In addition, both metal-based nanoparticles and oxidases can activate tumor immunity through multiple pathways, so the combination of the "metal-oxidase" system with immunotherapy has a powerful synergistic effect. This article firstly introduced the metals which induce CDT and the oxidases which induce starvation therapy and then described the "metal-oxidase" cascade catalytic system in detail. Moreover, we highlight the application of the "metal-oxidase" system in combination with numerous antitumor therapies, especially in combination with immunotherapy, expecting to provide new ideas for tumor treatment.

摘要

化学动力学治疗(CDT)由过渡金属催化,以及细胞内代谢物氧化酶催化的饥饿治疗,都是基于纳米催化剂的经典肿瘤治疗方法。CDT 单一疗法存在一些局限性,包括金属离子的催化效率低和内源性过氧化氢(HO)不足。此外,单一饥饿治疗在抵抗肿瘤方面的能力有限。“金属-氧化酶”级联催化系统是将细胞内代谢物氧化酶引入基于金属的纳米平台中,这完美地解决了上述单一疗法的缺点。在该系统中,氧化酶不仅可以消耗肿瘤营养物质产生“饥饿效应”,还可以为 CDT 提供充足的 HO 和合适的酸性环境,从而进一步促进 CDT 和饥饿治疗之间的协同作用,增强抗肿瘤效果。更重要的是,“金属-氧化酶”系统可以与其他抗肿瘤疗法(如光热疗法、缺氧激活药物治疗、化学疗法和免疫疗法)相结合,以最大限度地发挥其抗肿瘤效果。此外,金属纳米粒子和氧化酶都可以通过多种途径激活肿瘤免疫,因此“金属-氧化酶”系统与免疫疗法的结合具有强大的协同作用。本文首先介绍了诱导 CDT 的金属和诱导饥饿治疗的氧化酶,然后详细描述了“金属-氧化酶”级联催化系统。此外,我们强调了“金属-氧化酶”系统在与多种抗肿瘤疗法相结合,特别是与免疫疗法相结合的应用,期望为肿瘤治疗提供新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/46338232bf2d/12951_2021_1074_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/660692ede90e/12951_2021_1074_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/ef2b5d6f44b9/12951_2021_1074_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/c4d1b6d53554/12951_2021_1074_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/ac27d3df8ab8/12951_2021_1074_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/3bf06ac227d0/12951_2021_1074_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/f97e38c6a55b/12951_2021_1074_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/b6e261c1db57/12951_2021_1074_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/597f81b9c870/12951_2021_1074_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/b36e0a372bc1/12951_2021_1074_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/49c904342d07/12951_2021_1074_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/d802e8fc2804/12951_2021_1074_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/dd7f88268842/12951_2021_1074_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/45cdda176710/12951_2021_1074_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/e93787d62680/12951_2021_1074_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/46338232bf2d/12951_2021_1074_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/660692ede90e/12951_2021_1074_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/ef2b5d6f44b9/12951_2021_1074_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/c4d1b6d53554/12951_2021_1074_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/ac27d3df8ab8/12951_2021_1074_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/3bf06ac227d0/12951_2021_1074_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/f97e38c6a55b/12951_2021_1074_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/b6e261c1db57/12951_2021_1074_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/597f81b9c870/12951_2021_1074_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/b36e0a372bc1/12951_2021_1074_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/49c904342d07/12951_2021_1074_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/d802e8fc2804/12951_2021_1074_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/dd7f88268842/12951_2021_1074_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/45cdda176710/12951_2021_1074_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/e93787d62680/12951_2021_1074_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42a9/8520258/46338232bf2d/12951_2021_1074_Fig14_HTML.jpg

相似文献

[1]
Fenton/Fenton-like metal-based nanomaterials combine with oxidase for synergistic tumor therapy.

J Nanobiotechnology. 2021-10-16

[2]
A multivalent polyphenol-metal-nanoplatform for cascade amplified chemo-chemodynamic therapy.

Acta Biomater. 2024-1-1

[3]
Pillar[6]arene-Based Supramolecular Nanocatalysts for Synergistically Enhanced Chemodynamic Therapy by the Intracellular Cascade Reaction.

ACS Appl Mater Interfaces. 2021-11-17

[4]
Phosphate-Degradable Nanoparticles Based on Metal-Organic Frameworks for Chemo-Starvation-Chemodynamic Synergistic Antitumor Therapy.

ACS Appl Mater Interfaces. 2021-8-11

[5]
Prussian Blue-Derived Nanoplatform for In Situ Amplified Photothermal/Chemodynamic/Starvation Therapy.

ACS Appl Mater Interfaces. 2023-4-12

[6]
Cyclic reactions-mediated self-supply of HO and O for cooperative chemodynamic/starvation cancer therapy.

Biomaterials. 2021-8

[7]
Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy.

Mater Today Bio. 2022-1-4

[8]
Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances.

Small. 2022-2

[9]
Nanomedicine for combination of chemodynamic therapy and immunotherapy of cancers.

Biomater Sci. 2024-9-10

[10]
Copper peroxide coated upconversion nanoparticle modified with glucose oxidase for HO self-supplying starvation-enhanced chemodynamic therapy .

Dalton Trans. 2022-8-2

引用本文的文献

[1]
Recent Advancement in MRI-Based Nanotheranostic Agents for Tumor Diagnosis and Therapy Integration.

Int J Nanomedicine. 2025-8-29

[2]
Nano-enhanced Fenton/Fenton-like chemistry: integrating peroxidase nanozymes, MOFs, and MXenes for next-generation colorimetric biosensors.

Nanoscale Adv. 2025-6-30

[3]
Novel adjuvant delivery system constructed by alum-emulsion hybrid nanoparticles with TLR9 agonists boosts vaccine immunity.

J Nanobiotechnology. 2025-7-1

[4]
Advancing oral cancer care: nanomaterial-driven diagnostic and therapeutic innovations.

Cell Biol Toxicol. 2025-5-23

[5]
Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment.

Redox Biol. 2025-3

[6]
Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types.

Sci Rep. 2025-2-3

[7]
Metal-based smart nanosystems in cancer immunotherapy.

Exploration (Beijing). 2024-3-22

[8]
Intelligent nanocatalyst mediated lysosomal ablation pathway to coordinate the amplification of tumor treatment.

Mater Today Bio. 2024-10-16

[9]
Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm.

Biomaterials. 2025-3

[10]
Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment.

Chemosphere. 2024-9

本文引用的文献

[1]
Novel nanomedicines to overcome cancer multidrug resistance.

Drug Resist Updat. 2021-9

[2]
Low-Dose Radiotherapy Reverses Tumor Immune Desertification and Resistance to Immunotherapy.

Cancer Discov. 2022-1

[3]
Dynamic nanoassemblies of nanomaterials for cancer photomedicine.

Adv Drug Deliv Rev. 2021-10

[4]
Synergistic enhancement of immunological responses triggered by hyperthermia sensitive Pt NPs NIR laser to inhibit cancer relapse and metastasis.

Bioact Mater. 2021-5-31

[5]
Macrophages: The Good, the Bad, and the Gluttony.

Front Immunol. 2021

[6]
Recent advances in active targeting of nanomaterials for anticancer drug delivery.

Adv Colloid Interface Sci. 2021-10

[7]
Nanocarriers as a Tool for the Treatment of Colorectal Cancer.

Pharmaceutics. 2021-8-23

[8]
Engineering Endogenous Tumor-Associated Macrophage-Targeted Biomimetic Nano-RBC to Reprogram Tumor Immunosuppressive Microenvironment for Enhanced Chemo-Immunotherapy.

Adv Mater. 2021-10

[9]
Reinforcing the Induction of Immunogenic Cell Death Via Artificial Engineered Cascade Bioreactor-Enhanced Chemo-Immunotherapy for Optimizing Cancer Immunotherapy.

Small. 2021-9

[10]
Lactate Consumption via Cascaded Enzymes Combined VEGF siRNA for Synergistic Anti-Proliferation and Anti-Angiogenesis Therapy of Tumors.

Adv Healthc Mater. 2021-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索