Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
Genes (Basel). 2024 Nov 12;15(11):1457. doi: 10.3390/genes15111457.
The exposome (e.g., totality of environmental exposures) and its role in Alzheimer's Disease and Alzheimer's Disease and Related Dementias (AD/ADRD) are increasingly critical areas of study. However, little is known about how interventions on the exposome, including personal behavioral modification or policy-level interventions, may impact AD/ADRD disease burden at the population level in real-world settings and the cost-effectiveness of interventions. We performed a critical review to discuss the challenges in modeling exposome interventions on population-level AD/ADRD burden and the potential of using agent-based modeling (ABM) and other advanced data science methods for causal inference to achieve this. We describe how ABM can be used for empirical causal inference modeling and provide a virtual laboratory for simulating the impacts of personal and policy-level interventions. These hypothetical experiments can provide insight into the optimal timing, targeting, and duration of interventions, identifying optimal combinations of interventions, and can be augmented with economic analyses to evaluate the cost-effectiveness of interventions. We also discuss other data science methods, including structural equation modeling and Mendelian randomization. Lastly, we discuss challenges in modeling the complex exposome, including high dimensional and sparse data, the need to account for dynamic changes over time and over the life course, and the role of exposome burden scores developed using item response theory models and artificial intelligence to address these challenges. This critical review highlights opportunities and challenges in modeling exposome interventions on population-level AD/ADRD disease burden while considering the cost-effectiveness of different interventions, which can be used to aid data-driven policy decisions.
外核组(例如,环境暴露的全部)及其在阿尔茨海默病和相关痴呆症(AD/ADRD)中的作用是越来越重要的研究领域。然而,对于外核组干预(包括个人行为改变或政策层面的干预)如何影响现实环境中的人群 AD/ADRD 疾病负担以及干预的成本效益知之甚少。我们进行了一项批判性评论,讨论了在人群水平 AD/ADRD 负担模型中外核组干预的挑战,以及使用基于代理的建模(ABM)和其他先进的数据科学方法进行因果推断以实现这一目标的潜力。我们描述了如何使用 ABM 进行经验因果推断建模,并提供了一个虚拟实验室,用于模拟个人和政策层面干预的影响。这些假设性实验可以深入了解干预的最佳时机、目标和持续时间,确定干预的最佳组合,并可以结合经济分析来评估干预的成本效益。我们还讨论了其他数据科学方法,包括结构方程模型和孟德尔随机化。最后,我们讨论了在外核组建模方面的挑战,包括高维稀疏数据、需要随时间和生命过程的变化进行动态变化以及使用项目反应理论模型和人工智能开发的外核组负担评分的作用来解决这些挑战。这项批判性评论强调了在外核组干预对人群水平 AD/ADRD 疾病负担的建模方面的机遇和挑战,同时考虑了不同干预措施的成本效益,这可以用于辅助数据驱动的政策决策。