Suppr超能文献

古代甲烷球菌苹果酸脱氢酶的特性表明,强大的热稳定性可防止其在强烈γ辐射下展开。

The Characterization of Ancient Methanococcales Malate Dehydrogenases Reveals That Strong Thermal Stability Prevents Unfolding Under Intense γ-Irradiation.

作者信息

Madern Dominique, Halgand Frédéric, Houée-Levin Chantal, Dufour Anne-Béatrice, Coquille Sandrine, Ansanay-Alex Salomé, Sacquin-Mora Sophie, Brochier-Armanet Céline

机构信息

Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France.

Institut de Chimie Physique, Université Paris-Saclay, 91405 Orsay, France.

出版信息

Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae231.

Abstract

Malate dehydrogenases (MalDHs) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80 °C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints: one remained hyperthermophilic, while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e. strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory toward mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.

摘要

苹果酸脱氢酶(MalDHs)(EC.1.1.1.37)参与三羧酸循环中草酰乙酸向丙酮酸的转化,是研究酶进化和适应性的一个相关模型。同样,最近的一项研究表明,古菌的一个主要谱系——甲烷球菌目,是研究原核生物蛋白质组热适应性分子过程的一个良好模型。在这里,我们使用祖先序列重建和古酶学来表征古代和现存的苹果酸脱氢酶。我们观察到推断的最佳生长温度与实验测得的活性最佳温度(A-Topt)之间存在良好的相关性。特别是,我们发现甲烷球菌目的祖先中存在的苹果酸脱氢酶具有超嗜热稳定性,其A-Topt为80°C,这与超嗜热的生活方式一致。这个祖先产生了两个具有不同热限制的谱系:一个保持超嗜热,而另一个则经历了几次独立的适应较冷环境的过程。令人惊讶的是,第一个谱系的酶保留了耐热行为(即强热稳定性和高A-Topt),而第二个谱系的祖先则表现出强热稳定性,但A-Topt降低。通过使用突变体,我们模拟了向嗜温性的适应轨迹,并表明通过引入一些突变,可以在不改变酶热稳定性的情况下显著降低A-Topt。最后,我们揭示了热稳定性与抵抗γ射线诱导的去折叠能力之间意想不到的联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6b8/11631191/5cf6cc7e37ac/msae231f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验