Liu Xudong, Li Shenzhen, Wu Yuanlong, Guo Tengfei, Xie Junhao, Tao Jinqiu, Wu Hao, Ran Qianping
School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China.
State Key Laboratory of High Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 211103, P. R. China.
ACS Nano. 2024 Nov 19;18(46):31957-31966. doi: 10.1021/acsnano.4c09705. Epub 2024 Nov 4.
Photothermal superhydrophobic coatings offer immense promise for anti-icing and deicing applications. However, achieving long-term passive anti-icing and active deicing in photothermal superhydrophobic coating remains a significant challenge. We introduce a durable photothermal superhydrophobic coating, coprepared from water-soluble polytrimethylsiloxane (PMATF) in synergy with cactus-inspired composite nanoparticles (MPCS), which is composed of MoS, polydopamine (PDA), Cu nanoparticles, and octadecanethiol (18-SH). The PM-MPCS coating exhibits a maximum water contact angle (WCA) of 171.8° and retains a high WCA after 330 cycles of sandpaper abrasion and 210 cycles of tape peeling. Additionally, the PM-MPCS coating exhibits exceptional photothermal conversion ability. The PM-MPCS films attain a surface temperature of 86.9 °C, displaying a photothermal conversion efficiency of 77.4%. In anti-icing tests conducted at -15 °C, PM-MPCS significantly prolonged the freezing time; the freezing time of a 5 μL water droplet was extended to 43 min. The active deicing performance is similarly effective, with PM-MPCS melting a 5 μL ice sphere in 5.5 min. Furthermore, PM-MPCS exhibits a low ice adhesion strength of 6.0 kPa, enabling effective ice removal even after numerous freeze-thaw cycles. The exceptional anti-icing and deicing performance can be attributed to the synergistic effects of the composite nanoparticles, which minimize ice penetration and enhance the photothermal conversion capabilities of the particles. These findings underscore the potential of PM-MPCS as a viable candidate for advanced anti-icing and deicing applications across various industries.
光热超疏水涂层在防冰和除冰应用方面具有巨大潜力。然而,在光热超疏水涂层中实现长期被动防冰和主动除冰仍然是一项重大挑战。我们介绍了一种耐用的光热超疏水涂层,它由水溶性聚三甲基硅氧烷(PMATF)与受仙人掌启发的复合纳米颗粒(MPCS)协同制备而成,MPCS由MoS、聚多巴胺(PDA)、铜纳米颗粒和十八烷硫醇(18-SH)组成。PM-MPCS涂层的最大水接触角(WCA)为171.8°,在经过330次砂纸磨损循环和210次胶带剥离循环后仍保持高水接触角。此外,PM-MPCS涂层具有出色的光热转换能力。PM-MPCS薄膜的表面温度达到86.9°C,光热转换效率为77.4%。在-15°C下进行的防冰测试中,PM-MPCS显著延长了冻结时间;5μL水滴的冻结时间延长至43分钟。主动除冰性能同样有效,PM-MPCS在5.5分钟内融化了一个5μL的冰球。此外,PM-MPCS的冰附着力强度低至6.0 kPa,即使经过多次冻融循环也能有效除冰。这种出色的防冰和除冰性能可归因于复合纳米颗粒的协同效应,该效应可最大程度减少冰的渗透并增强颗粒的光热转换能力。这些发现强调了PM-MPCS作为各行业先进防冰和除冰应用的可行候选材料的潜力。