Suppr超能文献

尺度相关相互作用使肌动蛋白-中间丝复合材料表现出突发的微观流变学应力响应。

Scale-dependent interactions enable emergent microrheological stress response of actin-vimentin composites.

机构信息

Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837, USA.

Department of Physics and BioInspired Institute, Syracuse University, Syracuse, NY 13210, USA.

出版信息

Soft Matter. 2024 Nov 20;20(45):9007-9021. doi: 10.1039/d4sm00988f.

Abstract

The mechanical properties of the mammalian cell regulate many cellular functions and are largely dictated by the cytoskeleton, a composite network of protein filaments, including actin, microtubules, and intermediate filaments. Interactions between these distinct filaments give rise to emergent mechanical properties that are difficult to generate synthetically, and recent studies have made great strides in advancing our understanding of the mechanical interplay between actin and microtubule filaments. While intermediate filaments play critical roles in the stress response of cells, their effect on the rheological properties of the composite cytoskeleton remains poorly understood. Here, we use optical tweezers microrheology to measure the linear viscoelastic properties and nonlinear stress response of composites of actin and vimentin with varying molar ratios of actin to vimentin. We reveal a surprising, nearly opposite effect of actin-vimentin network mechanics compared to single-component networks in the linear nonlinear regimes. Namely, the linear elastic plateau modulus and zero-shear viscosity are markedly reduced in composites compared to single-component networks of actin or vimentin, whereas the initial response force and stiffness are maximized in composites single-component networks in the nonlinear regime. While these emergent trends are indicative of distinct interactions between actin and vimentin, nonlinear stiffening and long-time stress response appear to both be dictated primarily by actin, at odds with previous bulk rheology studies. We demonstrate that these complex, scale-dependent effects arise from the varied contributions of network density, filament stiffness, non-specific interactions, and poroelasticity to the mechanical response at different spatiotemporal scales. Cells may harness this complex behavior to facilitate distinct stress responses at different scales and in response to different stimuli to allow for their hallmark multifunctionality.

摘要

哺乳动物细胞的力学性质调节着许多细胞功能,而这些功能在很大程度上是由细胞骨架决定的,细胞骨架是一种由蛋白丝组成的复合网络,包括肌动蛋白、微管和中间丝。这些不同的丝之间的相互作用产生了难以合成的新兴力学性质,最近的研究在推进我们对肌动蛋白和微管丝之间力学相互作用的理解方面取得了重大进展。虽然中间丝在细胞的应激反应中起着关键作用,但它们对复合细胞骨架流变性质的影响仍知之甚少。在这里,我们使用光镊微流变学来测量具有不同肌动蛋白与中间丝摩尔比的肌动蛋白和中间丝的复合材料的线性粘弹性性质和非线性应力响应。我们揭示了肌动蛋白-中间丝网络力学在线性和非线性区域中与单一组分网络相比具有惊人的、几乎相反的作用。即与肌动蛋白或中间丝的单一组分网络相比,复合材料的线性弹性平台模量和零剪切粘度明显降低,而在非线性区域中,复合材料和单一组分网络的初始响应力和刚度最大。虽然这些新兴趋势表明肌动蛋白和中间丝之间存在明显的相互作用,但非线性硬化和长时间的应力响应似乎主要由肌动蛋白决定,这与之前的体流变学研究结果不一致。我们证明,这些复杂的、依赖于尺度的效应是由网络密度、丝刚度、非特异性相互作用和多孔弹性对不同时空尺度下的力学响应的不同贡献引起的。细胞可能利用这种复杂的行为在不同尺度上促进不同的应激反应,并对不同的刺激做出反应,从而实现其标志性的多功能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验